Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
54 result(s) for "Bacik, Peter"
Sort by:
Considerations About Bi and Pb in the Crystal Structure of Cu-Bearing Tourmaline
Copper- and Mn-bearing elbaitic tourmaline (“Paraíba tourmaline”) sometimes contains significant amounts of Pb and Bi. Their position in the tourmaline crystal structure was studied with correlation analysis and bond valence calculations. Correlations between the F content and the X-site charge allow predicting the X-site occupancy. Three sets of tourmaline analyses were studied: (1) Pb-rich tourmalines from the Minh Tien pegmatite, Vietnam; (2) Cu-, Pb- and Bi-bearing tourmalines from the Mulungu mine, Brazil; (3) Cu- and Bi-bearing tourmalines from the Alto dos Quintos mine, Brazil. Two correlations were plotted: (1) the charge by considering only Na1+, Ca2+ and K1+; (2) the charge by adding Pb2+ and Bi3+ to the X-site charge. When plotting correlations for the Minh Tien tourmalines, the correlation significantly improves by adding Pb2+ to the X site. For the Alto dos Quintos tourmalines, only a slight increase of the correlation coefficient is observed, while such a correlation for tourmalines from Mulungu interestingly shows a slight decrease of the correlation coefficient. Bond valence calculations revealed that Bi3+ and Pb2+ can indeed occupy the X site via BiLi(NaAl)−1, PbLi(NaCu)−1 and possibly PbCu(NaAl)−1 substitutions as seen in the investigated tourmaline samples. At the Y site, Pb4+ can be substituted via PbLi(AlCu)−1, and PbVO(AlVOH)−1, while Bi5+ does not have any stable arrangement in Cu-bearing fluor-elbaite. The occurrence of Pb4+ at the Y site could be one explanation for the results of the correlations of the Mulungu tourmalines. Another explanation could be that during the tourmaline crystallization some additional Bi and Pb came into the pegmatitic system and hence disturbed the correlation between the average X-site charge and the F content. Further plots of such correlations in “Paraíba tourmaline” samples might also help to distinguish between the worldwide localities of these rare and sought-after tourmalines.
The position of vanadium in the crystal structure of zoisite, variety tanzanite; structural refinement, optical absorption spectroscopy and bond-valence calculations
Vanadium is the dominant trace element and chromophore in tanzanite, the most valued gemmological variety of zoisite. The structure of zoisite-tanzanite was obtained by structural refinement to assess the vanadium location in the zoisite structure. However, the small V content in tanzanite evidenced by electron microprobe and laser ablation inductively coupled plasma mass spectrometry limits the exact determination of the V position in the zoisite structure. Structural refinement revealed that the average bond length of the less distorted M1,2O6 octahedron is below 1.90 Å, and M3O6 has slightly longer bonds with an average of ca. 1.96 Å. The M1,2 site is slightly overbonded with a bond-valence sum (BVS) of 3.03 vu, whereas M3 is slightly underbonded (BVS = 2.78 vu). Optical absorption spectra revealed that most V is trivalent, but a small portion is probably in a four-valent state. Therefore, crystal field Superposition Model and Bond-Valence Model calculations were applied based on several necessary assumptions: (1) V occupies octahedral sites; and (2) it can occur in two oxidation states, V3+ or V4+. Crystal field Superposition Model calculations from the optical spectra indicated that V3+ prefers occupying the M1,2 site; the preference of V4+ from the present data was impossible to determine. Bond-Valence Model calculations revealed no unambiguous preference for V3+, although simple bond-length calculation suggests the preference of the M3 site. However, it is quite straightforward that the M1,2 site is better suitable for V4+. If the possible octahedral distortion is considered, the M1,2O6 octahedron is subject to a smaller change in distortion if occupied by V3+ than the M3O6 octahedron. Consequently, considering the results of both the crystal field Superposition Model and Bond-Valence Model calculations, we assume that both V3+ and V4+ prefer the M1,2 site.
The Site Occupancy Assessment in Beryl Based on Bond-Length Constraints
The site preference for each cation and site in beryl based on bond-length calculations was determined and compared with analytical data. Tetrahedral SiO4 six-membered rings normally have no substitutions which results from very compact Si4+–O bonds in tetrahedra. Any substitution except Be would require significant tetrahedral ring distortion. The Be tetrahedron should also be negligibly substituted based on the bond-valence calculation; the tetrahedral Li–O bond length is almost 20% larger than Be2+–O. Similar or smaller bond lengths were calculated for Cr3+, V3+, Fe3+, Fe2+, Mn3+, Mg2+, and Al3+, which can substitute for Be but also can occupy a neighboring tetrahedrally coordinated site which is completely vacant in the full Be occupancy. The octahedral site is also very compressed due to dominant Al with short bond lengths; any substitution results in octahedron expansion. There are two channel sites in beryl: the smaller 2b site can be occupied by Na+, Ca2+, Li+, and REE3+ (Rare Earth Elements); Fe2+ and Fe3+ are too small; K+, Cs+, Rb+, and Ba2+ are too large. The channel 2a-site average bond length is 3.38 Å which allows the presence of simple molecules such as H2O, CO2, or NH4 and the large-sized cations-preferring Cs+.
Microlite-group minerals: tracers of complex post-magmatic evolution in beryl–columbite granitic pegmatites, Maršíkov District, Bohemian Massif, Czech Republic
Microlite-group minerals occur as common replacement products after primary and secondary columbite-group minerals (CGM) in albitised blocky K-feldspar and in coarse-grained, muscovite-rich units of the Schinderhübel I, Scheibengraben and Bienergraben beryl–columbite pegmatites in the Maršíkov District (Silesian Unit, Bohemian Massif, Czech Republic). Textural and compositional variations of microlite-group minerals were examined using electron probe micro-analyses and microRaman spectroscopy (μRS). A complex post-magmatic evolution of the pegmatites and the following microlite populations (Mic) and related processes were found: (1) precipitation of U, Na-rich and F-poor Mic I on cracks in CGM; (2) alteration of Mic I to U-rich together with Na- and F-poor Mic II; and (3) partial replacement of Mic I and II by Mic III with a distinct Na, U and Ti loss and Ca and F gain. Stage (2) includes an extensive leaching of Na, without U loss. The final stage (3) produced euhedral-to-subhedral oscillatory zoned Ca and F enriched Mic III with distinctly different composition to the previous F-poor and A- site vacant Mic II. Aggregates of fersmite are associated commonly with Mic III. Distal Mic IIId occurs locally on cracks in K-feldspar or quartz, with compositions analogous to Mic III. Compositional variations and textural features of microlite-group minerals during dissolution–reprecipitation processes serve as sensitive tracers of post-magmatic evolution in granitic pegmatites recording complex interactions between magmatic pegmatite units and externally derived, hydrothermal metamorphic fluids.
The crystal-chemical autopsy of octahedral sites in Na-dominant tourmalines: octahedral metrics model unconstrained by the Y,Z-site disorder assignment
The structure of tourmaline-supergroup minerals includes two types of octahedral sites: the ZO6 octahedron is smaller and more distorted than the YO6 octahedron. The octahedral sites metrics were studied and their dependency on the chemical composition unconstrained by Y,Z-site disorder assignment. Published chemical and structural data were collected from American Mineralogist Crystal Structure Database for tourmaline samples belonging to dravite-schorl, schorl-elbaite (including tsilaisites) and schorl (± dravite)-olenite series. Correlation analysis of this dataset provided the evidence of cation distribution between sites - Al and Mg are disordered between Z and Y sites, while Fe (mostly ferrous), Li and Mn strongly prefer Y site. Irregular cation distribution results in the variable metrics of both octahedra in tourmalines. It is the function of well-balanced relations between cations at octahedral and neighbouring sites based on bond-valence variations due to different ionic charges. Considering Z and Y cations, there is a dependence of the cation charge difference and the octahedral metrics. The most pronounced irregularity of both octahedra was observed in elbaite samples with the largest charge difference between Li and Al. In contrast, \"buergerite\" samples with trivalent Fe and Al at both octahedral sites have both octahedra almost isometric. Schorl and dravite samples display an increasing metric irregularity related to the Al and Mg content; increase in Mg reduces irregularity because Mg is distributed between both octahedral sites balancing charge difference. In contrast, Fe-rich and Al-rich schorl samples display larger irregularity which may result from selective incorporation of Fe2+ to the Y site. In olenite samples, the irregularity of both octahedra decreases with an increasing Al content. These variations are related to the shared edge of ZO6 and YO6 octahedra including both O3 and O6 site where bonds of both anions are balancing bond-valence requirements of the stable electroneutral structure. In addition to the bond-valence relations, effects of the internal geometry of atomic shells should be also considered, i.e. Jahn-Teller distortion that can be decisive factor in cation occupancy. Especially Fe2+ can strongly prefer YO6 octahedron whose prolonged tetragonal dipyramidal geometry is more favourable for Fe2+ in (t2g)4(eg)2 configuration.
Chrysoberyl and associated beryllium minerals resulting from metamorphic overprinting of the Marsíkov-Schinderhübel III Pegmatite, Czech Republic
The Marsíkov-Schinderhübel III pegmatite in the Hruby Jeseník Mountains, Silesian Domain, Czech Republic, is a classic example of chrysoberyl-bearing LCT granitic pegmatite of beryl-columbite subtype. This thin pegmatite dyke, (up to 1 m in thickness in biotite-amphibole gneiss is characterised by symmetrical internal zoning. Tabular and prismatic chrysoberyl crystals (≤3 cm) occur typically in the intermediate albite-rich unit and rarely in the quartz core. Chrysoberyl microtextures are quite complex; their crystals are irregularly patchy, concentric or fine oscillatory zoned with large variations in Fe content (1.1-5.3 wt.% Fe2O3; ≤0.09 apfu). Chrysoberyl compositions reveal dominant Fe3+ = Al3+ and minor Fe2+ + Ti4+ = 2(Al, Fe)3+ substitution mechanisms in the octahedral sites. Tin, Ga, and V (determined by LA-ICP-MS) are characteristic trace elements incorporated in the chrysoberyl structure, whereas anomalously high Ta and Nb concentrations (thousands ppm) in chrysoberyl are probably caused by nano- to micro-inclusions of Nb-Ta oxide minerals; especially columbite-tantalite. Textural relationships between associated minerals, distinct schistosity of the pegmatite parallel to the host gneiss foliation and fragmentation of the pegmatite body into blocks as a result of superimposed stress are clear evidence for deformation and metamorphic overprinting of the pegmatite. Primary magmatic beryl, albite and muscovite were transformed to chrysoberyl, fibrolitic sillimanite, secondary quartz and muscovite during a high-temperature (∼600°C) and medium-pressure (∼250-500 MPa) prograde metamorphic stage under amphibolite-facies conditions. A subsequent retrograde, low-temperature (∼200-500°C) and pressure (≤250 MPa) metamorphic stage resulted in the local alteration of chrysoberyl to secondary Fe,Na-rich beryl, euclase, bertrandite and late muscovite.
Monazite-(Gd), a new Gd-dominant mineral of the monazite group from the Zimná Voda REE-U-Au quartz vein, Prakovce, Western Carpathians, Slovakia
Monazite-(Gd), ideally GdPO4, is a new mineral of the monazite group. It was discovered near Prakovce-Zimná Voda, ∼23 km WNW of Kosice, Western Carpathians, Slovakia. It forms anhedral domains (≤100 µm, mostly 10-50 µm in size), in close association with monazite-(Sm), Gd-bearing xenotime-(Y), Gd-bearing hingganite-(Y), fluorapatite and uraninite. All these minerals are hosted in a REE-U-Au quartz-muscovite vein, hosted in phyllites in an exocontact to granites. The density calculated using the average empirical formula and unit-cell parameters is 5.55 g/cm3. The average chemical composition measured by means of electron microprobe is as follows (wt.%): P2O5 29.68, As2O5 0.15, SiO2 0.07, ThO2 0.01, UO2 0.04, Y2O3 1.30, La2O3 3.19, Ce2O3 6.93, Pr2O3 1.12, Nd2O3 10.56, Sm2O3 17.36, Eu2O3 1.49, Gd2O3 22.84, Tb2O3 1.57, Dy2O3 2.27, CaO 0.21, total 99.67. The corresponding empirical formula calculated on the basis of 4 oxygen atoms is: (Gd0.30Sm0.24Nd0.15Ce0.10La0.05Dy0.03Y0.03Tb0.02Eu0.02 Pr0.02Ca0.01)0.98P1.01O4. The ideal formula is GdPO4. The monazite-type structure has been confirmed by micro-Raman spectroscopy and selected-area electron diffraction. Monazite-(Gd) is monoclinic, space group P21/n, a = 6.703(1) Å, b = 6.914(1) Å, c = 6.383(1) Å, β = 103.8(1)°, V = 287.3(1) Å3 and Z = 4. The middle REE enrichment of monazite-(Gd) is shared with the associated Gd-bearing xenotime-(Y) to 'xenotime-(Gd)' and Gd-bearing hingganite-(Y). This exotic REE signature and precipitation of Gd-bearing mineral assemblage is a product of selective complexing and enrichment in middle REE in low-temperature hydrothermal fluids by alteration of primary uraninite, brannerite and fluorapatite on a micro-scale. The new mineral is named as an analogue of monazite-(La), monazite-(Ce), monazite-(Nd) and monazite-(Sm) but with Gd dominant among the REE.
Xenotime-(Gd), a new Gd-dominant mineral of the xenotime group from the Zimna Voda REE-U-Au quartz vein, Prakovce, Western Carpathians, Slovakia
Xenotime-(Gd), ideally GdPO4, is a new mineral of the xenotime group. It was discovered at the Zimná Voda REE-U-Au occurrence near Prakovce, Western Carpathians, Slovakia. It forms rare crystal domains (≤20 µm, usually ≤10 µm in size) in Gd-rich xenotime-(Y) crystals (≤100 µm in size), in association with monazite-group minerals, uraninite, fluorapatite and uranyl arsenates-phosphates. The hydrothermal REE-U-Au mineralisation occurs in a quartz-muscovite vein, hosted in Palaeozoic phyllites near exocontact with Permian granites. The density is 5.26 g/cm3, based on calculated average empirical formula and unit-cell parameters. The average chemical composition (n = 6) measured by electron microprobe is as follows (wt.%): P2O5 30.1, As2O5 0.5, SiO2 0.2, UO2 0.3, Y2O3 15.7, (La, Ce, Pr, Nd)2O3 0.5, Sm2O3 5.7, Eu2O3 1.4, Gd2O3 29.2, Tb2O3 3.9, Dy2O3 10.4, Ho2O3 0.4, (Er, Tm, Yb, Lu)2O3 2.1, (Ca, Fe, Pb, Mn, Ba)O 0.1, total 100.5. The corresponding empirical formula calculated on the basis of 4 oxygen atoms is: (Gd0.37Y0.32Dy0.13Sm0.08Tb0.05Eu0.02Er0.01Tm0.01Nd0.01...)Σ1 .01(P0.98As0.01Si0.01)O4. The empirical formula of the Gd-richest composition is: (Gd0.38Y0.31Dy0.13Sm0.08Tb0.05Eu0.02Er0.01Nd0.01Ho0.01...)Σ1 .01(P0.98As0.01Si0.01)O4. The ideal formula is GdPO4. The xenotime-type structure has been confirmed by micro-Raman spectroscopy and a Fast Fourier-Transform pattern using HRTEM. Xenotime-(Gd) is tetragonal, space group I41/amd, a = 6.9589(5) Å, c = 6.0518(6) Å, V = 293.07(3) Å3 and Z = 4. The new mineral is named as an analogue of xenotime-(Y) and xenotime-(Yb) with Gd dominant among the REE. The middle REE enrichment of xenotime-(Gd) is shared with the associated monazite-(Gd) and Gd-rich hingganite-(Y). This exotic REE signature and precipitation of Gd-bearing minerals is a product of selective complexing and enrichment in MREE in low-temperature hydrothermal fluids by alteration of uraninite, brannerite and fluorapatite on a micro-scale. The existence of xenotime-(Gd) and monazite-(Gd) is the first naturally documented dimorphism among REE phosphates. In addition, xenotime-(Gd) is only the third approved Gd-dominant mineral, after lepersonnite-(Gd) and monazite-(Gd).
Phenakite and bertrandite: products of post-magmatic alteration of beryl in granitic pegmatites (Tatric Superunit, Western Carpathians, Slovakia)
The beryllium silicate minerals phenakite and bertrandite have been identified in granitic pegmatite dykes of the beryl-columbite subtype of Variscan age (~340−355 Ma), associated with S- to I-type granitic rocks of the Tatric Superunit, Western Carpathians (Slovakia). The two beryllium silicates and associated minerals were characterised by electron microprobe analysis, back-scattered electron petrography and cathodoluminescence imagery, X-ray diffraction and micro-Raman techniques. Phenakite and bertrandite form euhedral-to-anhedral crystals and aggregates in irregular domains and veinlets replacing primary magmatic beryl. A detailed textural study revealed a close genetic association of phenakite and bertrandite with secondary fine-grained quartz, K-feldspar and muscovite. Locally, clay phyllosilicate minerals, (with compositions similar to those of Fe-dominant hydrobiotite, beidellite, nontronite and saponite) occur as the youngest minerals. During the post-magmatic (hydrothermal) stage of the pegmatites, infiltration of aqueous K-bearing fluids at T ≈ 200–400°C resulted in the breakdown of magmatic beryl to secondary assemblages containing phenakite and bertrandite.