Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
31 result(s) for "Backes, Dirk"
Sort by:
Ultrafast X-ray imaging of the light-induced phase transition in VO2
Using light to control transient phases in quantum materials is an emerging route to engineer new properties and functionality, with both thermal and non-thermal phases observed out of equilibrium. Transient phases are expected to be heterogeneous, either through photo-generated domain growth or by generating topological defects, and this impacts the dynamics of the system. However, this nanoscale heterogeneity has not been directly observed. Here we use time- and spectrally resolved coherent X-ray imaging to track the prototypical light-induced insulator-to-metal phase transition in vanadium dioxide on the nanoscale with femtosecond time resolution. We show that the early-time dynamics are independent of the initial spatial heterogeneity and observe a 200 fs switch to the metallic phase. A heterogeneous response emerges only after hundreds of picoseconds. Through spectroscopic imaging, we reveal that the transient metallic phase is a highly orthorhombically strained rutile metallic phase, an interpretation that is in contrast to those based on spatially averaged probes. Our results demonstrate the critical importance of spatially and spectrally resolved measurements for understanding and interpreting the transient phases of quantum materials.The intermediate states in photo-excited phase transitions are expected to be inhomogeneous. However, ultrafast X-ray imaging shows the early part of the metal–insulator transition in VO2 is homogeneous but then becomes heterogeneous.
Emergent and robust ferromagnetic-insulating state in highly strained ferroelastic LaCoO3 thin films
Transition metal oxides are promising candidates for the next generation of spintronic devices due to their fascinating properties that can be effectively engineered by strain, defects, and microstructure. An excellent example can be found in ferroelastic LaCoO 3 with paramagnetism in bulk. In contrast, unexpected ferromagnetism is observed in tensile-strained LaCoO 3 films, however, its origin remains controversial. Here we simultaneously reveal the formation of ordered oxygen vacancies and previously unreported long-range suppression of CoO 6 octahedral rotations throughout LaCoO 3 films. Supported by density functional theory calculations, we find that the strong modification of Co 3 d -O 2 p hybridization associated with the increase of both Co-O-Co bond angle and Co-O bond length weakens the crystal-field splitting and facilitates an ordered high-spin state of Co ions, inducing an emergent ferromagnetic-insulating state. Our work provides unique insights into underlying mechanisms driving the ferromagnetic-insulating state in tensile-strained ferroelastic LaCoO 3 films while suggesting potential applications toward low-power spintronic devices. Transition metal oxides are a promising class of materials to engineer multiferroic properties for next-generation spintronic devices. Here, the authors demonstrate an emergent and robust ferromagnetic-insulating state in ferroelastic LaCoO 3 epitaxial films by strain-defect-microstructure manipulated electronic and magnetic states.
Topological states and phase transitions in Sb2Te3-GeTe multilayers
Topological insulators (TIs) are bulk insulators with exotic ‘topologically protected’ surface conducting modes. It has recently been pointed out that when stacked together, interactions between surface modes can induce diverse phases including the TI, Dirac semimetal, and Weyl semimetal. However, currently a full experimental understanding of the conditions under which topological modes interact is lacking. Here, working with multilayers of the TI Sb 2 Te 3 and the band insulator GeTe, we provide experimental evidence of multiple topological modes in a single Sb 2 Te 3 -GeTe-Sb 2 Te 3 structure. Furthermore, we show that reducing the thickness of the GeTe layer induces a phase transition from a Dirac-like phase to a gapped phase. By comparing different multilayer structures we demonstrate that this transition occurs due to the hybridisation of states associated with different TI films. Our results demonstrate that the Sb 2 Te 3 -GeTe system offers strong potential towards manipulating topological states as well as towards controlledly inducing various topological phases.
Control of the antiferromagnetic domain configuration and Néel axis orientation with epitaxial strain
In the growing field of spintronic devices incorporating antiferromagnetic materials, control of the domain configuration and Néel axis orientation is critical for technological implementations. Here we show by X-ray magnetic linear dichroism in photoelectron emission microscopy how antiferromagnetic properties of LaFeO 3 (LFO) thin films can be tailored through epitaxial strain. LFO films were grown via molecular beam epitaxy with precise stoichiometric control, using substrates that span a range of strain states—from compressive to tensile—and crystal symmetries, including different crystallographic orientations. First, we show that epitaxial strain dictates the Néel axis orientation, shifting it from completely in-plane under compressive strain to completely out-of-plane under tensile strain, regardless of the substrate crystal symmetry. Second, we find that LFO films grown on cubic substrates exhibit a fourfold distribution of antiferromagnetic domains, but can be controlled by varying the substrate miscut, while those on orthorhombic substrates, regardless of strain state, form large-scale monodomains, a highly desirable feature for spintronic applications. Precise control over antiferromagnetic domain configurations and Néel axis orientation is essential for technological advancement of spintronic devices. Here, the authors use epitaxial strain to tailor the magnetic properties of LaFeO 3 thin films, demonstrating a crystal engineering approach which may have much wider applicability.
Magnetic and structural properties of CoFeB thin films grown by pulsed laser deposition
The emergence of thin film CoFeB has driven research and industrial applications in the past decades, with the magnetic random access memory (MRAM) the most prominent example. Because of its beneficial properties, it fulfills multiple functionalities as information-storing, spin-filtering, and reference layer in magnetic tunnel junctions. In future, this versatility can be exploited beyond the traditional applications of spintronics by combining with advanced materials, such as oxide-based materials. Pulsed laser deposition (PLD) is their predominant growth-method, and thus the compatibility of CoFeB with this growth technique will be tested here. This encompasses a comprehensive investigation of the structural and magnetic propoperties. In particular, we find a substantial 'dead' magnetic layer and confirm that it is caused by oxidation employing the x-ray magnetic circular dichroism (XMCD) effect. The low damping encountered in vector network analyzer-based ferromagnetic resonance (VNA-FMR) renders them suitable for magnonics applications. These findings demonstrate that CoFeB thin films are compatible with emergent, PLD-grown materials, ensuring their relevance for future applications.
Stable magnetic droplet solitons in spin-transfer nanocontacts
Magnetic droplet solitons are shown to be stable excitations that can be controlled by applied magnetic fields and electrical currents in thin films with perpendicular magnetic anisotropy. Magnetic thin films with perpendicular magnetic anisotropy have localized excitations that correspond to reversed, dynamically precessing magnetic moments, which are known as magnetic droplet solitons. Fundamentally, these excitations are associated with an attractive interaction between elementary spin-excitations and have been predicted to occur in perpendicularly magnetized materials in the absence of damping 1 , 2 . Although damping suppresses these excitations, it can be compensated by spin-transfer torques when an electrical current flows in nanocontacts to ferromagnetic thin films 3 , 4 . Theory predicts the appearance of magnetic droplet solitons in nanocontacts at a threshold current 5 and, recently, experimental signatures of droplet nucleation have been reported 6 . However, to date, these solitons have been observed to be nearly reversible excitations, with only partially reversed magnetization 6 . Here, we show that magnetic droplet solitons exhibit a strong hysteretic response in field and current, proving the existence of bistable states: droplet and non-droplet states. In the droplet soliton state we find that the magnetization in the contact is almost fully reversed. These observations, in addition to their fundamental interest, are important to understanding and controlling droplet motion, nucleation and annihilation 7 , 8 , 9 .
Emergent and robust ferromagnetic-insulating state in highly strained ferroelastic LaCoO 3 thin films
Transition metal oxides are promising candidates for the next generation of spintronic devices due to their fascinating properties that can be effectively engineered by strain, defects, and microstructure. An excellent example can be found in ferroelastic LaCoO with paramagnetism in bulk. In contrast, unexpected ferromagnetism is observed in tensile-strained LaCoO films, however, its origin remains controversial. Here we simultaneously reveal the formation of ordered oxygen vacancies and previously unreported long-range suppression of CoO octahedral rotations throughout LaCoO films. Supported by density functional theory calculations, we find that the strong modification of Co 3d-O 2p hybridization associated with the increase of both Co-O-Co bond angle and Co-O bond length weakens the crystal-field splitting and facilitates an ordered high-spin state of Co ions, inducing an emergent ferromagnetic-insulating state. Our work provides unique insights into underlying mechanisms driving the ferromagnetic-insulating state in tensile-strained ferroelastic LaCoO films while suggesting potential applications toward low-power spintronic devices.
Reconfigurable Reservoir Computing in a Magnetic Metamaterial
In-materia reservoir computing (RC) leverages the intrinsic physical responses of functional materials to perform complex computational tasks. Magnetic metamaterials are exciting candidates for RC due to their huge state space, nonlinear emergent dynamics, and non-volatile memory. However, to be suitable for a broad range of tasks, the material system is required to exhibit a broad range of properties, and isolating these behaviours experimentally can often prove difficult. By using an electrically accessible device consisting of an array of interconnected magnetic nanorings -- a system shown to exhibit complex emergent dynamics -- here we show how reconfiguring the reservoir architecture allows exploitation of different aspects the system's dynamical behaviours. This is evidenced through state-of-the-art performance in diverse benchmark tasks with very different computational requirements, highlighting the additional computational configurability that can be obtained by altering the input/output architecture around the material system.