Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
17
result(s) for
"Backus, Carey"
Sort by:
Dietary reversal of neuropathy in a murine model of prediabetes and the metabolic syndrome
by
Feldman, Eva L.
,
Hayes, John M.
,
O'Brien, Phillipe D.
in
Adipocytes
,
Adipocytes - pathology
,
Adipose Tissue, White - pathology
2017
Patients with the metabolic syndrome, defined as obesity, dyslipidemia, hypertension, and impaired glucose tolerance (IGT), can develop the same macro- and microvascular complications as patients with type 2 diabetes, including peripheral neuropathy. In type 2 diabetes, glycemic control has little effect on the development and progression of peripheral neuropathy, suggesting that other metabolic syndrome components may contribute to the presence of neuropathy. A parallel phenomenon is observed in patients with prediabetes and the metabolic syndrome, where improvement in weight and dyslipidemia more closely correlates with restoration of nerve function than improvement in glycemic status. The goal of the current study was to develop a murine model that resembles the human condition. We examined longitudinal parameters of the metabolic syndrome and neuropathy development in six mouse strains/genotypes (BKS-wt, BKS-Leprdb/+, B6-wt, B6-Leprdb/+, BTBR-wt, and BTBR-Lepob/+) fed a 54% high-fat diet (HFD; from lard). All HFD-fed mice developed large fiber neuropathy and IGT. Changes appeared early and consistently in B6-wt mice, and paralleled the onset of neuropathy. Terminally, B6-wt mice displayed all components of the metabolic syndrome, including obesity, IGT, hyperinsulinemia, dyslipidemia, and oxidized low density lipoproteins (oxLDL). Dietary reversal, whereby B6-wt mice fed HFD from 4-20 weeks of age were switched to standard chow for 4 weeks, completely normalized neuropathy, promoted weight loss, improved insulin sensitivity, and restored LDL-cholesterol and oxLDL by 50% compared to HFD control mice. This dietary reversal model provides the basis for mechanistic studies investigating peripheral nerve damage in the setting of the metabolic syndrome, and ultimately the development of mechanism-based therapies for neuropathy.
Journal Article
Juvenile murine models of prediabetes and type 2 diabetes develop neuropathy
by
Feldman, Eva L.
,
Hayes, John M.
,
O'Brien, Phillipe D.
in
Animals
,
Children & youth
,
Cholesterol
2018
Peripheral neuropathy (neuropathy) is a common complication of obesity and type 2 diabetes in children and adolescents. To model this complication in mice, 5-week old male C57BL/6J mice were fed a high-fat diet to induce diet-induced obesity (DIO), a model of prediabetes, and a cohort of these animals was injected with low-dose streptozotocin (STZ) at 12 weeks of age to induce hyperglycemia and type 2 diabetes. Neuropathy assessments at 16, 24, and 36 weeks demonstrated that DIO and DIO-STZ mice displayed decreased motor and sensory nerve conduction velocities as early as 16 weeks, hypoalgesia by 24 weeks, and cutaneous nerve fiber loss by 36 weeks, relative to control mice fed a standard diet. Interestingly, neuropathy severity was similar in DIO and DIO-STZ mice at all time-points despite significantly higher fasting glucose levels in the DIO-STZ mice. These mouse models provide critical tools to better understand the underlying pathogenesis of prediabetic and diabetic neuropathy from youth to adulthood, and support the idea that hyperglycemia alone does not drive early neuropathy.
Journal Article
Cytoplasmic TDP43 Binds microRNAs: New Disease Targets in Amyotrophic Lateral Sclerosis
by
Feldman, Eva L.
,
Walter, Nils G.
,
Figueroa-Romero, Claudia
in
Amyotrophic lateral sclerosis
,
Cellular Neuroscience
,
Cytoplasm
2020
Amyotrophic lateral sclerosis (ALS) is a progressive, fatal, and incurable neurodegenerative disease. Recent studies suggest that dysregulation of gene expression by microRNAs (miRNAs) may play an important role in ALS pathogenesis. The reversible nature of this dysregulation makes miRNAs attractive pharmacological targets and a potential therapeutic avenue. Under physiological conditions, miRNA biogenesis, which begins in the nucleus and includes further maturation in the cytoplasm, involves trans-activation response element DNA/RNA-binding protein of 43 kDa (TDP43). However, TDP43 mutations or stress trigger TDP43 mislocalization and inclusion formation, a hallmark of most ALS cases, that may lead to aberrant protein/miRNA interactions in the cytoplasm. Herein, we demonstrated that TDP43 exhibits differential binding affinity for select miRNAs, which prompted us to profile miRNAs that preferentially bind cytoplasmic TDP43. Using cellular models expressing TDP43 variants and miRNA profiling analyses, we identified differential levels of 65 cytoplasmic TDP43-associated miRNAs. Of these, approximately 30% exhibited levels that differed by more than 3-fold in the cytoplasmic TDP43 models relative to our control model. The hits included both novel miRNAs and miRNAs previously associated with ALS that potentially regulate several predicted genes and pathways that may be important for pathogenesis. Accordingly, these findings highlight specific miRNAs that may shed light on relevant disease pathways and could represent potential biomarkers and reversible treatment targets for ALS.
Journal Article
Lack of both bradykinin B1 and B2 receptors enhances nephropathy, neuropathy, and bone mineral loss in Akita diabetic mice
2010
An insertion polymorphism of the angiotensin-I converting enzyme gene (ACE) is common in humans and the higher expressing allele is associated with an increased risk of diabetic complications. The ACE polymorphism does not significantly affect blood pressure or angiotensin II levels, suggesting that the kallikrein-kinin system partly mediates the effects of the polymorphism. We have therefore explored the influence of lack of both bradykinin receptors (B1R and B2R) on diabetic nephropathy, neuropathy, and osteopathy in male mice heterozygous for the Akita diabetogenic mutation in the insulin 2 gene (Ins2). We find that all of the detrimental phenotypes observed in Akita diabetes are enhanced by lack of both B1R and B2R, including urinary albumin excretion, glomerulosclerosis, glomerular basement membrane thickening, mitochondrial DNA deletions, reduction of nerve conduction velocities and of heat sensation, and bone mineral loss. Absence of the bradykinin receptors also enhances the diabetes-associated increases in plasma thiobarbituric acid-reactive substances, mitochondrial DNA deletions, and renal expression of fibrogenic genes, including transforming growth factor beta1, connective tissue growth factor, and endothelin-1. Thus, lack of B1R and B2R exacerbates diabetic complications. The enhanced renal injury in diabetic mice caused by lack of B1R and B2R may be mediated by a combination of increases in oxidative stress, mitochondrial DNA damage and over expression of fibrogenic genes.
Journal Article
Severe sensory and sympathetic deficits in mice lacking neurotrophin-3
by
Jones, Kevin R.
,
Wang, Xiao-Yun
,
Reichardt, Louis F.
in
Animals
,
Animals, Newborn
,
Biological and medical sciences
1994
DURING development, neurotrophins help shape the nervous system by regulating neuronal survival and differentiation. Neurotrophin-3 (refs 1–5) is the most abundant neurotrophin during early development
6
. Neurons responsive to neurotrophin-3
in vitro
include primary sensory, sympathetic
1–4
motor
7
, enteric
1
, locus coeruleus
8
, hippocampal and cerebellar neurons (ref. 9 for example). Here we report that mice lacking neurotrophin-3 have severe deficits in sensory and sympathetic populations. These mice lack muscle spindles and show abnormal limb positions. In contrast, motor neurons, the enteric nervous system, and the major anatomical regions of the central nervous system seem to develop normally. Comparisons with mutants deficient in other neurotrophins
10–12
or their receptors
13–15
indicate that some neurons require more than one neurotrophin during embryogenesis and suggest that neurotrophin-3 functions by binding receptors in addition to its primary receptor trkC (ref. 16). In particular, neurotrophin-3 is essential for survival of sympathetic and sensory neurons that later become dependent on nerve growth factor or brain-derived neurotrophic factor.
Journal Article
The PTPN2/PTPN1 inhibitor ABBV-CLS-484 unleashes potent anti-tumour immunity
2023
Immune checkpoint blockade is effective for some patients with cancer, but most are refractory to current immunotherapies and new approaches are needed to overcome resistance
1
,
2
. The protein tyrosine phosphatases PTPN2 and PTPN1 are central regulators of inflammation, and their genetic deletion in either tumour cells or immune cells promotes anti-tumour immunity
3
–
6
. However, phosphatases are challenging drug targets; in particular, the active site has been considered undruggable. Here we present the discovery and characterization of ABBV-CLS-484 (AC484), a first-in-class, orally bioavailable, potent PTPN2 and PTPN1 active-site inhibitor. AC484 treatment in vitro amplifies the response to interferon and promotes the activation and function of several immune cell subsets. In mouse models of cancer resistant to PD-1 blockade, AC484 monotherapy generates potent anti-tumour immunity. We show that AC484 inflames the tumour microenvironment and promotes natural killer cell and CD8
+
T cell function by enhancing JAK–STAT signalling and reducing T cell dysfunction. Inhibitors of PTPN2 and PTPN1 offer a promising new strategy for cancer immunotherapy and are currently being evaluated in patients with advanced solid tumours (ClinicalTrials.gov identifier
NCT04777994
). More broadly, our study shows that small-molecule inhibitors of key intracellular immune regulators can achieve efficacy comparable to or exceeding that of antibody-based immune checkpoint blockade in preclinical models. Finally, to our knowledge, AC484 represents the first active-site phosphatase inhibitor to enter clinical evaluation for cancer immunotherapy and may pave the way for additional therapeutics that target this important class of enzymes.
An orally bioavailable small-molecule active-site inhibitor of the phosphatases PTPN2 and PTPN1, ABBV-CLS-484, demonstrates immunotherapeutic efficacy in mouse models of cancer resistant to PD-1 blockade.
Journal Article
Two Dynamin-2 Genes Are Required for Normal Zebrafish Development
by
Feldman, Eva L.
,
Gibbs, Elizabeth M.
,
Davidson, Ann E.
in
Abnormalities
,
Animal models
,
Animals
2013
Dynamin-2 (DNM2) is a large GTPase involved in clathrin-mediated endocytosis and related trafficking pathways. Mutations in human DNM2 cause two distinct neuromuscular disorders: centronuclear myopathy and Charcot-Marie-Tooth disease. Zebrafish have been shown to be an excellent animal model for many neurologic disorders, and this system has the potential to inform our understanding of DNM2-related disease. Currently, little is known about the endogenous zebrafish orthologs to human DNM2. In this study, we characterize two zebrafish dynamin-2 genes, dnm2 and dnm2-like. Both orthologs are structurally similar to human DNM2 at the gene and protein levels. They are expressed throughout early development and in all adult tissues examined. Knockdown of dnm2 and dnm2-like gene products resulted in extensive morphological abnormalities during development, and expression of human DNM2 RNA rescued these phenotypes. Our findings suggest that dnm2 and dnm2-like are orthologs to human DNM2, and that they are required for normal zebrafish development.
Journal Article
Transcriptional Profiling of Diabetic Neuropathy in the BKS db/db Mouse: A Model of Type 2 Diabetes
2011
A better understanding of the molecular mechanisms underlying the development and progression of diabetic neuropathy (DN) is essential for the design of mechanism-based therapies. We examined changes in global gene expression to define pathways regulated by diabetes in peripheral nerve.
Microarray data for 24-week-old BKS db/db and db/+ mouse sciatic nerve were analyzed to define significantly differentially expressed genes (DEGs); DEGs were further analyzed to identify regulated biological processes and pathways. Expression profile clustering was performed to identify coexpressed DEGs. A set of coexpressed lipid metabolism genes was used for promoter sequence analysis.
Gene expression changes are consistent with structural changes of axonal degeneration. Pathways regulated in the db/db nerve include lipid metabolism, carbohydrate metabolism, energy metabolism, peroxisome proliferator-activated receptor signaling, apoptosis, and axon guidance. Promoter sequences of lipid metabolism-related genes exhibit evidence of coregulation of lipid metabolism and nervous system development genes.
Our data support existing hypotheses regarding hyperglycemia-mediated nerve damage in DN. Moreover, our analyses revealed a possible coregulation mechanism connecting hyperlipidemia and axonal degeneration.
Journal Article
Regulation of Neurotrophin-3 Expression by Epithelial-Mesenchymal Interactions: The Role of Wnt Factors
1999
Neurotrophins regulate survival, axonal growth, and target innervation of sensory and other neurons. Neurotrophin-3 (NT-3) is expressed specifically in cells adjacent to extending axons of dorsal root ganglia neurons, and its absence results in loss of most of these neurons before their axons reach their targets. However, axons are not required for NT-3 expression in limbs; instead, local signals from ectoderm induce NT-3 expression in adjacent mesenchyme. Wnt factors expressed in limb ectoderm induce NT-3 in the underlying mesenchyme. Thus, epithelial-mesenchymal interactions mediated by Wnt factors control NT-3 expression and may regulate axonal growth and guidance.
Journal Article
Mitochondrial uncoupling has no effect on microvascular complications in type 2 diabetes
2019
Diabetic peripheral neuropathy (DPN), diabetic kidney disease (DKD), and diabetic retinopathy (DR) contribute to significant morbidity and mortality in diabetes patients. The incidence of these complications is increasing with the diabetes epidemic, and current therapies minimally impact their pathogenesis in type 2 diabetes (T2D). Improved mechanistic understanding of each of the diabetic complications is needed in order to develop disease-modifying treatments for patients. We recently identified fundamental differences in mitochondrial responses of peripheral nerve, kidney, and retinal tissues to T2D in BKS-
db/db
mice. However, whether these mitochondrial adaptations are the cause or consequence of tissue dysfunction remains unclear. In the current study BKS-
db/db
mice were treated with the mitochondrial uncoupler, niclosamide ethanolamine (NEN), to determine the effects of mitochondrial uncoupling therapy on T2D, and the pathogenesis of DPN, DKD and DR. Here we report that NEN treatment from 6–24 wk of age had little effect on the development of T2D and diabetic complications. Our data suggest that globally targeting mitochondria with an uncoupling agent is unlikely to provide therapeutic benefit for DPN, DKD, or DR in T2D. These data also highlight the need for further insights into the role of tissue-specific metabolic reprogramming in the pathogenesis of diabetic complications.
Journal Article