Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
55 result(s) for "Bacry, Emmanuel"
Sort by:
Combining Signals for EEG-Free Arousal Detection during Home Sleep Testing: A Retrospective Study
Introduction: Accurately detecting arousal events during sleep is essential for evaluating sleep quality and diagnosing sleep disorders, such as sleep apnea/hypopnea syndrome. While the American Academy of Sleep Medicine guidelines associate arousal events with electroencephalogram (EEG) signal variations, EEGs are often not recorded during home sleep testing (HST) using wearable devices or smartphone applications. Objectives: The primary objective of this study was to explore the potential of alternatively relying on combinations of easily measurable physiological signals during HST for arousal detection where EEGs are not recorded. Methods: We conducted a data-driven retrospective study following an incremental device-agnostic analysis approach, where we simulated a limited-channel setting using polysomnography data and used deep learning to automate the detection task. During the analysis, we tested multiple signal combinations to evaluate their potential effectiveness. We trained and evaluated the model on the Multi-Ethnic Study of Atherosclerosis dataset. Results: The results demonstrated that combining multiple signals significantly improved performance compared with single-input signal models. Notably, combining thoracic effort, heart rate, and a wake/sleep indicator signal achieved competitive performance compared with the state-of-the-art DeepCAD model using electrocardiogram as input with an average precision of 61.59% and an average recall of 56.46% across the test records. Conclusions: This study demonstrated the potential of combining easy-to-record HST signals to characterize the autonomic markers of arousal better. It provides valuable insights to HST device designers on signals that improve EEG-free arousal detection.
INTERMITTENT PROCESS ANALYSIS WITH SCATTERING MOMENTS
Scattering moments provide nonparametric models of random processes with stationary increments. They are expected values of random variables computed with a nonexpansive operator, obtained by iteratively applying wavelet transforms and modulus nonlinearities, which preserves the variance. First- and second-order scattering moments are shown to characterize intermittency and self-similarity properties of multiscale processes. Scattering moments of Poisson processes, fractional Brownian motions, Lévy processes and multifractal random walks are shown to have characteristic decay. The Generalized Method of Simulated Moments is applied to scattering moments to estimate data generating models. Numerical applications are shown on financial time-series and on energy dissipation of turbulent flows.
Self-Exclusion among Online Poker Gamblers: Effects on Expenditure in Time and Money as Compared to Matched Controls
Background: No comparative data is available to report on the effect of online self-exclusion. The aim of this study was to assess the effect of self-exclusion in online poker gambling as compared to matched controls, after the end of the self-exclusion period. Methods: We included all gamblers who were first-time self-excluders over a 7-year period (n = 4887) on a poker website, and gamblers matched for gender, age and account duration (n = 4451). We report the effects over time of self-exclusion after it ended, on money (net losses) and time spent (session duration) using an analysis of variance procedure between mixed models with and without the interaction of time and self-exclusion. Analyzes were performed on the whole sample, on the sub-groups that were the most heavily involved in terms of time or money (higher quartiles) and among short-duration self-excluders (<3 months). Results: Significant effects of self-exclusion and short-duration self-exclusion were found for money and time spent over 12 months. Among the gamblers that were the most heavily involved financially, no significant effect on the amount spent was found. Among the gamblers who were the most heavily involved in terms of time, a significant effect was found on time spent. Short-duration self-exclusions showed no significant effect on the most heavily involved gamblers. Conclusions: Self-exclusion seems efficient in the long term. However, the effect on money spent of self-exclusions and of short-duration self-exclusions should be further explored among the most heavily involved gamblers.
Description and assessment of trustability of motives for self-exclusion reported by online poker gamblers in a cohort using account-based gambling data
ObjectiveSelf-exclusion is one of the main responsible gambling tools. The aim of this study was to assess the reliability of self-exclusion motives in self-reports to the gambling service provider.SettingsThis is a retrospective cohort using prospective account-based gambling data obtained from a poker gambling provider.ParticipantsOver a period of 7 years we included all poker gamblers self-excluding for the first time, and reporting a motive for their self-exclusion (n=1996). We explored two groups: self-excluders who self-reported a motive related to addiction and those who reported a commercial motive.ResultsNo between-group adjusted difference was found on gambling summary variables. Sessions in the two groups were poorly discriminated one from another on four different machine-learning models. More than two-thirds of the gamblers resumed poker gambling after a first self-exclusion (n=1368), half of them within the first month. No between-group difference was found for the course of gambling after the first self-exclusion. 60.1% of first-time self-excluders self-excluded again (n=822). Losses in the previous month were greater before second self-exclusions than before the first.ConclusionsReported motives for self-exclusion appear non-informative, and could be misleading. Multiple self-exclusions seem to be more the rule than the exception. The process of self-exclusion should therefore be optimised from the first occurrence to protect heavy gamblers.
Concentration inequalities for matrix martingales in continuous time
This paper gives new concentration inequalities for the spectral norm of a wide class of matrix martingales in continuous time. These results extend previously established Freedman and Bernstein inequalities for series of random matrices to the class of continuous time processes. Our analysis relies on a new supermartingale property of the trace exponential proved within the framework of stochastic calculus. We provide also several examples that illustrate the fact that our results allow us to recover easily several formerly obtained sharp bounds for discrete time matrix martingales.
Continuous-Time Skewed Multifractal Processes as a Model for Financial Returns
We present the construction of a continuous-time stochastic process which has moments that satisfy an exact scaling relation, including odd-order moments. It is based on a natural extension of the multifractal random walk construction described in Bacry and Muzy (2003). This allows us to propose a continuous-time model for the price of a financial asset that reflects most major stylized facts observed on real data, including asymmetry and multifractal scaling.
Continuous-Time Skewed Multifractal Processes as a Model for Financial Returns
We present the construction of a continuous-time stochastic process which has moments that satisfy an exact scaling relation, including odd-order moments. It is based on a natural extension of the multifractal random walk construction described in Bacry and Muzy (2003). This allows us to propose a continuous-time model for the price of a financial asset that reflects most major stylized facts observed on real data, including asymmetry and multifractal scaling.
MULTIFRACTAL ANALYSIS IN A MIXED ASYMPTOTIC FRAMEWORK
Multifractal analysis of multiplicative random cascades is revisited within the framework of mixed asymptotics. In this new framework, the observed process can be modeled by a concatenation of independent binary cascades and statistics are estimated over a sample whose size increases as the resolution scale (or the sampling period) becomes finer. This allows one to continuously interpolate between the situation where one studies a single cascade sample at arbitrary fine scales and where, at fixed scale, the sample length (number of cascades realizations) becomes infinite. We show that scaling exponents of \"mixed\" partitions functions, that is, the estimator of the cumulant generating function of the cascade generator distribution depends on some \"mixed asymptotic\" exponent χ, respectively, above and below two critical value $p_{\\chi}^{-}$ and $p_{\\chi}^{+}$ . We study the convergence properties of partition functions in mixed asymtotics regime and establish a central limit theorem. Moreover, within the mixed asymptotic framework, we establish a \"box-counting\" multifractal formalism that can be seen as a rigorous formulation of Mandelbrot's negative dimension theory. Numerical illustrations of our results on specific examples are also provided. A possible application of these results is to distinguish data generated by log-Normal or log-Poisson models.
From Rough to Multifractal volatility: the log S-fBM model
We introduce a family of random measures \\(M_{H,T} (d t)\\), namely log S-fBM, such that, for \\(H>0\\), \\(M_{H,T}(d t) = e^{\\omega_{H,T}(t)} d t\\) where \\(\\omega_{H,T}(t)\\) is a Gaussian process that can be considered as a stationary version of an \\(H\\)-fractional Brownian motion. Moreover, when \\(H \\to 0\\), one has \\(M_{H,T}(d t) \\rightarrow {\\widetilde M}_{T}(d t)\\) (in the weak sense) where \\({\\widetilde M}_{T}(d t)\\) is the celebrated log-normal multifractal random measure (MRM). Thus, this model allows us to consider, within the same framework, the two popular classes of multifractal (\\(H = 0\\)) and rough volatility (\\(0