Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
24
result(s) for
"Badger, Merete"
Sort by:
Wind Speed Variation Mapped Using SAR before and after Commissioning of Offshore Wind Farms
2022
When installing offshore wind farms (OWFs) adjacent to the coast, one needs to consider the combined effects of the wind wakes caused by the OWFs and natural horizontal coastal wind speed gradients (HCWSGs). This study exploits the full Sentinel 1A/B and Envisat archive of synthetic aperture radar (SAR) imagery covering the northern European seas. More than 8700 SAR scenes fit well with our selection criteria and are processed as wind maps for the height 10 m above the sea surface. For eight selected wind farm sites, we systematically compare the wind flow variation before and after wind farm commissioning. Before the commissioning, we observe wind speed gradients up to ±4% for onshore and offshore winds. After the commissioning, we detect a 2–10% reduction in the mean wind speed downstream of the turbines after taking into account the background wind speed gradients. These velocity deficits are proportional to the OWF capacity. Our findings indicate that wind speed maps retrieved from SAR can be used to quantify the complex interactions between natural HCWSGs and turbine-induced effects on the mean wind climate. Ultimately, this can be used in connection with farm planning in coastal waters.
Journal Article
Wind Farm Wakes from SAR and Doppler Radar
by
Ahsbahs, Tobias
,
Nygaard, Nicolai Gayle
,
Badger, Merete
in
Doppler radar
,
remote sensing
,
satellite winds
2020
We retrieve atmospheric wake characteristics at the wind farm Westermost Rough from Sentinel-1 Synthetic Aperture Radar (SAR) images. For the first time, co-located reference measurements of the full flow field around the wind farm are available from Doppler radars. One case with a reference measurement of up to 10 km downstream of the wind farms shows that SAR images depict the wake better close to the wind farm than further downstream. The comparison of two cases with similar wind speed and direction indicate that under unstable atmospheric stratification, we can retrieve the structure of the wake field close to the wind farm from SAR, while this was not possible for a case with stable stratification. We find that openly available Sentinel-1 image archives can be used to study the structure of wind farm wakes depending on the atmospheric stability conditions. From an average of twelve available co-located cases, we find that velocity deficits at the wind turbine hub height are 8% from Doppler radar measurements and 4% from SAR wind retrievals.
Journal Article
Wind Retrieval from Constellations of Small SAR Satellites: Potential for Offshore Wind Resource Assessment
by
Orzel, Krzysztof
,
Hatfield, Daniel
,
Badger, Merete
in
Alternative energy sources
,
Artificial satellites
,
Coasts
2023
The planning of offshore wind energy projects requires wind observations over long periods for the establishment of wind speed distributions. In the marine environment, high-quality in situ observations are sparse and restricted to point locations. Numerical modeling is typically used to determine the spatial variability of the wind resource. Synthetic Aperture Radar (SAR) observations from satellites can be used for retrieval of wind fields over the ocean at a high spatial resolution. The recent launch of constellations of small SAR satellites by private companies will improve the sampling of SAR scenes significantly over the coming years compared with the current sampling rates offered by multi-purpose SAR missions operated by public space agencies. For the first time, wind fields are retrieved from a series of StriX SAR scenes delivered by Synspective (Japan) and also from Sentinel-1 scenes delivered by the European Space Agency. The satellite winds are compared with wind speed observations from the FINO3 mast in the North Sea. This leads to root-mean-square errors of 1.4–1.8 m s−1 and negative biases of −0.4 m s−1 and −1.0 m s−1, respectively. Although the Geophysical Model Functions (GMF) applied for wind retrievals have not yet been tuned for StriX SAR observations, the wind speed accuracy is satisfactory. Through conditional sampling, we estimate the wind resource from current and future SAR sampling scenarios where the number of SAR satellites in orbit is increasing over time. We find that hourly samples are needed to fully capture the diurnal wind speed variability at the site investigated. A combination of SAR samples from current missions with samples from clusters of small SAR satellites can yield the necessary number of wind speed samples for accurate wind resource estimation. This is particularly important for sites with pronounced diurnal wind speed variability. An additional benefit of small SAR satellites is that wind speed variability can be mapped at the sub-km scale. The very high spatial resolution is valuable for characterizing the wind conditions in the vicinity of existing offshore wind farms.
Journal Article
Wind Speed‐Up in Wind Farm Wakes Quantified From Satellite SAR and Mesoscale Modeling
by
Hasager, Charlotte Bay
,
Imber, James
,
Badger, Merete
in
Atmospheric turbulence
,
Kinetic energy
,
Mesoscale phenomena
2024
ABSTRACT
Satellite synthetic aperture radar (SAR) provides ocean surface wind fields at 10 m above sea level. The objective is to investigate the capability of SAR satellite StriX observations for mapping offshore wind farm wakes. The focus is on the conditions under which an apparent wind speed‐up is generated, measured in 48% of the 67 images available. The results compare well to Sentinel‐1 observations, showing a 34% wind speed‐up rate during several years based on 1171 images. Three wind speed‐up cases have been studied in detail using the mesoscale Weather, Research, and Forecasting (WRF) model with two wind farm parameterizations. At 10 m above sea level, the SAR‐based observations and WRF model compare for most cases, though only when turbulent kinetic energy (TKE) is included in the wind farm parameterization. The TKE mixes higher momentum downward in a stable atmosphere, causing surface wind speed‐up near the surface.
Journal Article
Offshore Wind Resources Assessment from Multiple Satellite Data and WRF Modeling over South China Sea
2015
Using accurate inputs of wind speed is crucial in wind resource assessment, as predicted power is proportional to the wind speed cubed. This study outlines a methodology for combining multiple ocean satellite winds and winds from WRF simulations in order to acquire the accurate reconstructed offshore winds which can be used for offshore wind resource assessment. First, wind speeds retrieved from Synthetic Aperture Radar (SAR) and Scatterometer ASCAT images were validated against in situ measurements from seven coastal meteorological stations in South China Sea (SCS). The wind roses from the Navy Operational Global Atmospheric Prediction System (NOGAPS) and ASCAT agree well with these observations from the corresponding in situ measurements. The statistical results comparing in situ wind speed and SAR-based (ASCAT-based) wind speed for the whole co-located samples show a standard deviation (SD) of 2.09 m/s (1.83 m/s) and correlation coefficient of R 0.75 (0.80). When the offshore winds (i.e., winds directed from land to sea) are excluded, the comparison results for wind speeds show an improvement of SD and R, indicating that the satellite data are more credible over the open ocean. Meanwhile, the validation of satellite winds against the same co-located mast observations shows a satisfactory level of accuracy which was similar for SAR and ASCAT winds. These satellite winds are then assimilated into the Weather Research and Forecasting (WRF) Model by WRF Data Assimilation (WRFDA) system. Finally, the wind resource statistics at 100 m height based on the reconstructed winds have been achieved over the study area, which fully combines the offshore wind information from multiple satellite data and numerical model. The findings presented here may be useful in future wind resource assessment based on satellite data.
Journal Article
Using Satellite SAR to Characterize the Wind Flow around Offshore Wind Farms
2015
Offshore wind farm cluster effects between neighboring wind farms increase rapidly with the large-scale deployment of offshore wind turbines. The wind farm wakes observed from Synthetic Aperture Radar (SAR) are sometimes visible and atmospheric and wake models are here shown to convincingly reproduce the observed very long wind farm wakes. The present study mainly focuses on wind farm wake climatology based on Envisat ASAR. The available SAR data archive covering the large offshore wind farms at Horns Rev has been used for geo-located wind farm wake studies. However, the results are difficult to interpret due to mainly three issues: the limited number of samples per wind directional sector, the coastal wind speed gradient, and oceanic bathymetry effects in the SAR retrievals. A new methodology is developed and presented. This method overcomes effectively the first issue and in most cases, but not always, the second. In the new method all wind field maps are rotated such that the wind is always coming from the same relative direction. By applying the new method to the SAR wind maps, mesoscale and microscale model wake aggregated wind-fields results are compared. The SAR-based findings strongly support the model results at Horns Rev 1.
Journal Article
SAR-Based Wind Resource Statistics in the Baltic Sea
by
Hasager, Charlotte B.
,
Larsén, Xiaoli G.
,
Bingöl, Ferhat
in
Correlation coefficient
,
offshore wind
,
Remote sensing
2011
Ocean winds in the Baltic Sea are expected to power many wind farms in the coming years. This study examines satellite Synthetic Aperture Radar (SAR) images from Envisat ASAR for mapping wind resources with high spatial resolution. Around 900 collocated pairs of wind speed from SAR wind maps and from 10 meteorological masts, established specifically for wind energy in the study area, are compared. The statistical results comparing in situ wind speed and SAR-based wind speed show a root mean square error of 1.17 m s−1, bias of −0.25 m s−1, standard deviation of 1.88 m s−1 and correlation coefficient of R2 0.783. Wind directions from a global atmospheric model, interpolated in time and space, are used as input to the geophysical model function CMOD-5 for SAR wind retrieval. Wind directions compared to mast observations show a root mean square error of 6.29° with a bias of 7.75°, standard deviation of 20.11° and R2 of 0.950. The scale and shape parameters, A and k, respectively, from the Weibull probability density function are compared at only one available mast and the results deviate ~2% for A but ~16% for k. Maps of A and k, and wind power density based on more than 1000 satellite images show wind power density values to range from 300 to 800 W m−2 for the 14 existing and 42 planned wind farms.
Journal Article
Wind Class Sampling of Satellite SAR Imagery for Offshore Wind Resource Mapping
by
Hasager, Charlotte Bay
,
Badger, Jake
,
Peña, Alfredo
in
Accuracy
,
Algorithms
,
Atmospheric boundary layer
2010
High-resolution wind fields retrieved from satellite synthetic aperture radar (SAR) imagery are combined for mapping of wind resources offshore where site measurements are costly and sparse. A new sampling strategy for the SAR scenes is introduced, based on a method for statistical–dynamical downscaling of large-scale wind conditions using a set of wind classes that describe representative wind situations. One or more SAR scenes are then selected to represent each wind class and the classes are weighted according to their frequency of occurrence. The wind class methodology was originally developed for mesoscale modeling of wind resources. Its performance in connection with sampling of SAR scenes is tested against two sets of random SAR samples and meteorological observations at three sites in the North Sea during 2005–08. Predictions of the mean wind speed and the Weibull scale parameter are within 5% from the mast observations whereas the deviation on power density and the Weibull shape parameter is up to 7%. These results are promising and may be improved further through a better population of the wind classes. Advantages of the wind class sampling method over random sampling include, in principle, selection of the most representative SAR scenes such that wind resources can be predicted from a lower number of SAR samples. Furthermore, the wind class weightings can be adjusted to represent any time period.
Journal Article
CMEMS-Based Coastal Analyses: Conditioning, Coupling and Limits for Applications
by
Pezzutto, Paolo
,
Schulz-Stellenfleth, Johannes
,
Sanchez-Arcilla, Agustin
in
Aquaculture
,
coastal and regional
,
coastal ocean applications
2021
Recent advances in numerical modeling, satellite data, and coastal processes, together with the rapid evolution of CMEMS products and the increasing pressures on coastal zones, suggest the timeliness of extending such products toward the coast. The CEASELESS EU H2020 project combines Sentinel and in-situ data with high-resolution models to predict coastal hydrodynamics at a variety of scales, according to stakeholder requirements. These predictions explicitly introduce land discharges into coastal oceanography, addressing local conditioning, assimilation memory and anisotropic error metrics taking into account the limited size of coastal domains. This article presents and discusses the advances achieved by CEASELESS in exploring the performance of coastal models, considering model resolution and domain scales, and assessing error generation and propagation. The project has also evaluated how underlying model uncertainties can be treated to comply with stakeholder requirements for a variety of applications, from storm-induced risks to aquaculture, from renewable energy to water quality. This has led to the refinement of a set of demonstrative applications, supported by a software environment able to provide met-ocean data on demand. The article ends with some remarks on the scientific, technical and application limits for CMEMS-based coastal products and how these products may be used to drive the extension of CMEMS toward the coast, promoting a wider uptake of CMEMS-based predictions.
Journal Article
Quarter-Century Offshore Winds from SSM/I and WRF in the North Sea and South China Sea
by
Zhu, Rong
,
Hahmann, Andrea
,
Hasager, Charlotte
in
North Sea
,
offshore wind resource
,
South China Sea
2016
We study the wind climate and its long-term variability in the North Sea and South China Sea, areas relevant for offshore wind energy development, using satellite-based wind data, because very few reliable long-term in-situ sea surface wind observations are available. The Special Sensor Microwave Imager (SSM/I) ocean winds extrapolated from 10 m to 100 m using the Charnock relationship and the logarithmic profile method are compared to Weather Research and Forecasting (WRF) model results in both seas and to in-situ observations in the North Sea. The mean wind speed from SSM/I and WRF differ only by 0.1 m/s at Fino1 in the North Sea, while west of Hainan in the South China Sea the difference is 1.0 m/s. Linear regression between SSM/I and WRF winds at 100 m show correlation coefficients squared of 0.75 and 0.67, standard deviation of 1.67 m/s and 1.41 m/s, and mean difference of −0.12 m/s and 0.83 m/s for Fino1 and Hainan, respectively. The WRF-derived winds overestimate the values in the South China Sea. The inter-annual wind speed variability is estimated as 4.6% and 4.4% based on SSM/I at Fino1 and Hainan, respectively. We find significant changes in the seasonal wind pattern at Fino1 with springtime winds arriving one month earlier from 1988 to 2013 and higher winds in June; no yearly trend in wind speed is observed in the two seas.
Journal Article