Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
13 result(s) for "Baek, Seung Yeob"
Sort by:
Recent breakthroughs in cathode of protonic ceramic fuel cells: Materials, functionalization, and future perspectives
Hydrogen stands as a promising energy carrier that plays a pivotal role in addressing global sustainability and achieving carbon neutrality. The conversion of hydrogen energy through fuel cells has emerged as a central technology in this pursuit. Notably, protonic ceramic fuel cells (PCFCs) hold potential for the future hydrogen energy ecosystem, owing to their impressive energy conversion efficiencies at low‐to‐intermediate temperatures (300–750°C). It is becoming increasingly evident that the development of PCFC technology relies on advancements in the cathode, as oxygen‐involved reactions often exhibit sluggish kinetics. In this comprehensive review, we aim to provide an overview of the current state of knowledge concerning the design of advanced cathodes for PCFCs. This includes discussing key descriptors for cathodes, methods for characterizing material properties, and functionalization techniques to enhance electrode performance. Finally, we present insights into future research directions. Hydrogen is a promising energy source, and protonic ceramic fuel cells (PCFCs) offer high efficiency at moderate temperatures. However, improving the cathode is essential due to slow oxygen reaction kinetics. This review discusses advanced cathode designs, characterization methods, and future research directions.
Fecal microbiota transplantation ameliorates atherosclerosis in mice with C1q/TNF-related protein 9 genetic deficiency
Despite the strong influence of the gut microbiota on atherosclerosis, a causal relationship between atherosclerosis pathophysiology and gut microbiota is still unverified. This study was performed to determine the impact of the gut microbiota on the pathogenesis of atherosclerosis caused by genetic deficiency. To elucidate the influence of the gut microbiota on atherosclerosis pathogenesis, an atherosclerosis-prone mouse model (C1q/TNF-related protein 9-knockout (CTRP9-KO) mice) was generated. The gut microbial compositions of CTRP9-KO and WT control mice were compared. Fecal microbiota transplantation (FMT) was performed to confirm the association between gut microbial composition and the progression of atherosclerosis. FMT largely affected the gut microbiota in both CTRP9-KO and WT mice, and all transplanted mice acquired the gut microbiotas of the donor mice. Atherosclerotic lesions in the carotid arteries were decreased in transplanted CTRP9-KO mice compared to CTRP9-KO mice prior to transplantation. Conversely, WT mice transplanted with the gut microbiotas of CTRP9-KO mice showed the opposite effect as that of CTRP9-KO mice transplanted with the gut microbiotas of WT mice. Here, we show that CTRP9 gene deficiency is related to the distribution of the gut microbiota in subjects with atherosclerosis. Transplantation of WT microbiotas into CTRP9-KO mice protected against the progression of atherosclerosis. Conversely, the transplantation of CTRP9-KO microbiotas into WT mice promoted the progression of atherosclerosis. Treating atherosclerosis by restoring gut microbial homeostasis may be an effective therapeutic strategy.Atherosclerosis: A role for gut microbesTransplanting fecal matter into the guts of mice used as a model of atherosclerosis suggests a role for gut microbes in causing, preventing and potentially treating this serious condition. Atherosclerosis is the build-up of fatty deposits in artery walls, often called hardening of the arteries. Eun Sil Kim and colleagues at Asan Medical Center, University of Ulsan College of Medicine in Seoul, South Korea, analyzed the gut microbes of mice that had been genetically altered to develop atherosclerosis. The gut microbial populations of the mice with atherosclerosis were significantly different from those of normal mice used as controls. Fecal transplantation from control mice into atherosclerotic mice halted the progression of atherosclerosis, with transplantation in the opposite direction promoting atherosclerosis. Macrophage cells of the immune system seem to be involved in the protective effect of beneficial gut microbes.
Relationship between DNA methylation changes and skeletal muscle mass
Background Sarcopenia is a disease diagnosed in the elderly. In patients with sarcopenia, the muscle mass decreases every year. The occurrence of sarcopenia is greatly affected by extrinsic factors such as eating habits, exercise, and lifestyle. The present study aimed to determine the relationship between muscle mass traits and genes affected by epigenetic factors with three different adjustment methods using Korean Genome and Epidemiology Study (KOGES) data. Results We conducted a demographic study and DNA methylation profiling by three studies according to the muscle mass index (MMI) adjustment methods: appendicular skeletal muscle mass divided by body weight (MMI1); appendicular skeletal muscle mass divided by square of height (MMI2); appendicular skeletal muscle mass divided by BMI (MMI3). We analyzed differentially methylated regions (DMRs) for each group. We then restricted our subjects to be top 30% (T30) and bottom 30% (B30) based on each MMI adjustment method. Additionally, we performed enrichment analysis using PathfindR to evaluate the relationship between identified DMRs and sarcopenia. A total of 895 subjects were included in the demographic study. The values of BMI, waist, and hip showed a significant difference in all three groups. Among 446 participants, 44 subjects whose DNA methylation profiles were investigated were included for DNA methylation analysis. The results of enrichment analysis showed differences between groups. In the women group through MMI1 method, only the glutamatergic synapse pathway showed a significant result. In the men group through MMI2 method, the adherens junction pathway was the most significant. Women group through MMI2 method showed similar results, having an enriched Rap1 signaling pathway. In men group through MMI3 method, the Fc epsilon RI signaling pathway was the most enriched. Particularly, the notch signaling pathway was significantly enriched in women group through MMI3 method. Conclusion This study presents results about which factor should be concerned first in muscle mass index (MMI) adjustment. The present study suggested that GAB2 and JPH3 in MMI1 method, HLA-DQB1 and TBCD in MMI2 method, GAB2, NDUFB4 and ISPD in MMI3 method are potential genes that can have an impact on muscle mass. It could enable future epigenetic studies of genes based on annotation results. The present study is a nationwide study in Korea with the largest size up to date that compares adjustment indices for MMI in epigenetic research.
Development of a 4-aminopyrazolo3,4-dpyrimidine-based dual IGF1R/Src inhibitor as a novel anticancer agent with minimal toxicity
Background Both the type I insulin-like growth factor receptor (IGF1R) and Src pathways are associated with the development and progression of numerous types of human cancer, and Src activation confers resistance to anti-IGF1R therapies. Hence, targeting both IGF1R and Src concurrently is one of the main challenges in combating resistance to the currently available anti-IGF1R-based anticancer therapies. However, the enhanced toxicity from this combinatorial treatment could be one of the main hurdles for this strategy, suggesting the necessity of developing a novel strategy for co-targeting IGF1R and Src to meet an urgent clinical need. Methods We synthesized a series of 4-aminopyrazolo[3,4- d ]pyrimidine-based dual IGF1R/Src inhibitors, selected LL28 as an active compound and evaluated its potential antitumor effects in vitro and in vivo using the MTT assay, colony formation assays, flow cytometric analysis, a tumor xenograft model, and the Kras G12D/+ -driven spontaneous lung tumorigenesis model. Results LL28 markedly suppressed the activation of IGF1R and Src and significantly inhibited the viability of several NSCLC cell lines in vitro by inducing apoptosis. Administration of mice with LL28 significantly suppressed the growth of H1299 NSCLC xenograft tumors without overt toxicity and substantially reduced the multiplicity, volume, and load of lung tumors in the Kras G12D/+ -driven lung tumorigenesis model. Conclusions The present results suggest the potential of LL28 as a novel anticancer drug candidate targeting both IGF1R and Src, providing a new avenue to efficient anticancer therapies. Further investigation is warranted in advanced preclinical and clinical settings.
Relationship between DNA methylation changes and skeletal muscle mass
Sarcopenia is a disease diagnosed in the elderly. In patients with sarcopenia, the muscle mass decreases every year. The occurrence of sarcopenia is greatly affected by extrinsic factors such as eating habits, exercise, and lifestyle. The present study aimed to determine the relationship between muscle mass traits and genes affected by epigenetic factors with three different adjustment methods using Korean Genome and Epidemiology Study (KOGES) data. We conducted a demographic study and DNA methylation profiling by three studies according to the muscle mass index (MMI) adjustment methods: appendicular skeletal muscle mass divided by body weight (MMI1); appendicular skeletal muscle mass divided by square of height (MMI2); appendicular skeletal muscle mass divided by BMI (MMI3). We analyzed differentially methylated regions (DMRs) for each group. We then restricted our subjects to be top 30% (T30) and bottom 30% (B30) based on each MMI adjustment method. Additionally, we performed enrichment analysis using PathfindR to evaluate the relationship between identified DMRs and sarcopenia. A total of 895 subjects were included in the demographic study. The values of BMI, waist, and hip showed a significant difference in all three groups. Among 446 participants, 44 subjects whose DNA methylation profiles were investigated were included for DNA methylation analysis. The results of enrichment analysis showed differences between groups. In the women group through MMI1 method, only the glutamatergic synapse pathway showed a significant result. In the men group through MMI2 method, the adherens junction pathway was the most significant. Women group through MMI2 method showed similar results, having an enriched Rap1 signaling pathway. In men group through MMI3 method, the Fc epsilon RI signaling pathway was the most enriched. Particularly, the notch signaling pathway was significantly enriched in women group through MMI3 method. This study presents results about which factor should be concerned first in muscle mass index (MMI) adjustment. The present study suggested that GAB2 and JPH3 in MMI1 method, HLA-DQB1 and TBCD in MMI2 method, GAB2, NDUFB4 and ISPD in MMI3 method are potential genes that can have an impact on muscle mass. It could enable future epigenetic studies of genes based on annotation results. The present study is a nationwide study in Korea with the largest size up to date that compares adjustment indices for MMI in epigenetic research.
Safety of Resuming Tumor Necrosis Factor Inhibitors in Ankylosing Spondylitis Patients Concomitant with the Treatment of Active Tuberculosis: A Retrospective Nationwide Registry of the Korean Society of Spondyloarthritis Research
Patients who develop an active tuberculosis infection during tumor necrosis factor (TNF) inhibitor treatment typically discontinue TNF inhibitor and receive standard anti-tuberculosis treatment. However, there is currently insufficient information on patient outcomes following resumption of TNF inhibitor treatment during ongoing anti- tuberculosis treatment. Our study was designed to investigate the safety of resuming TNF inhibitors in ankylosing spondylitis (AS) patients who developed tuberculosis as a complication of the use of TNF inhibitors. Through the nationwide registry of the Korean Society of Spondyloarthritis Research, 3929 AS patients who were prescribed TNF inhibitors were recruited between June 2003 and June 2014 at fourteen referral hospitals. Clinical information was analyzed about the patients who experienced tuberculosis after exposure to TNF inhibitors. The clinical features of resumers and non-resumers of TNF inhibitors were compared and the outcomes of tuberculosis were surveyed individually. Fifty-six AS patients were treated for tuberculosis associated with TNF inhibitors. Among them, 23 patients resumed TNF inhibitors, and these patients were found to be exposed to TNF inhibitors for a longer period of time and experienced more frequent disease flare-up after discontinuation of TNF inhibitors compared with those who did not resume. Fifteen patients resumed TNF inhibitors during anti-tuberculosis treatment (early resumers) and 8 after completion of anti-tuberculosis treatment (late resumers). Median time to resuming TNF inhibitor from tuberculosis was 3.3 and 9.0 months in the early and late resumers, respectively. Tuberculosis was treated successfully in all resumers and did not relapse in any of them during follow-up (median 33.8 [IQR; 20.8-66.7] months). Instances of tuberculosis were treated successfully in our AS patients, even when given concomitantly with TNF inhibitors. We suggest that early resumption of TNF inhibitors in AS patients could be safe under effective coverage of tuberculosis.