Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
173 result(s) for "Baez, John C."
Sort by:
Infinite-Dimensional Representations of 2-Groups
A ‘2-group’ is a category equipped with a multiplication satisfying laws like those of a group. Just as groups have representations on vector spaces, 2-groups have representations on ‘2-vector spaces’, which are categories analogous to vector spaces. Unfortunately, Lie 2-groups typically have few representations on the finite-dimensional 2-vector spaces introduced by Kapranov and Voevodsky. For this reason, Crane, Sheppeard and Yetter introduced certain infinite-dimensional 2-vector spaces called ‘measurable categories’ (since they are closely related to measurable fields of Hilbert spaces), and used these to study infinite-dimensional representations of certain Lie 2-groups. Here we continue this work. We begin with a detailed study of measurable categories. Then we give a geometrical description of the measurable representations, intertwiners and 2-intertwiners for any skeletal measurable 2-group. We study tensor products and direct sums for representations, and various concepts of subrepresentation. We describe direct sums of intertwiners, and sub-intertwiners—features not seen in ordinary group representation theory. We study irreducible and indecomposable representations and intertwiners. We also study ‘irretractable’ representations—another feature not seen in ordinary group representation theory. Finally, we argue that measurable categories equipped with some extra structure deserve to be considered ‘separable 2-Hilbert spaces’, and compare this idea to a tentative definition of 2-Hilbert spaces as representation categories of commutative von Neumann algebras.
Rényi Entropy and Free Energy
The Rényi entropy is a generalization of the usual concept of entropy which depends on a parameter q. In fact, Rényi entropy is closely related to free energy. Suppose we start with a system in thermal equilibrium and then suddenly divide the temperature by q. Then the maximum amount of work the system can perform as it moves to equilibrium at the new temperature divided by the change in temperature equals the system’s Rényi entropy in its original state. This result applies to both classical and quantum systems. Mathematically, we can express this result as follows: the Rényi entropy of a system in thermal equilibrium is without the ‘q−1-derivative’ of its free energy with respect to the temperature. This shows that Rényi entropy is a q-deformation of the usual concept of entropy.
Open Petri nets
The reachability semantics for Petri nets can be studied using open Petri nets. For us, an “open” Petri net is one with certain places designated as inputs and outputs via a cospan of sets. We can compose open Petri nets by gluing the outputs of one to the inputs of another. Open Petri nets can be treated as morphisms of a category Open(Petri), which becomes symmetric monoidal under disjoint union. However, since the composite of open Petri nets is defined only up to isomorphism, it is better to treat them as morphisms of a symmetric monoidal double category${\\mathbb O}$pen (Petri). We describe two forms of semantics for open Petri nets using symmetric monoidal double functors out of${\\mathbb O}$pen (Petri). The first, an operational semantics, gives for each open Petri net a category whose morphisms are the processes that this net can carry out. This is done in a compositional way, so that these categories can be computed on smaller subnets and then glued together. The second, a reachability semantics, simply says which markings of the outputs can be reached from a given marking of the inputs.
The Fundamental Theorem of Natural Selection
Suppose we have n different types of self-replicating entity, with the population Pi of the ith type changing at a rate equal to Pi times the fitness fi of that type. Suppose the fitness fi is any continuous function of all the populations P1,…,Pn. Let pi be the fraction of replicators that are of the ith type. Then p=(p1,…,pn) is a time-dependent probability distribution, and we prove that its speed as measured by the Fisher information metric equals the variance in fitness. In rough terms, this says that the speed at which information is updated through natural selection equals the variance in fitness. This result can be seen as a modified version of Fisher’s fundamental theorem of natural selection. We compare it to Fisher’s original result as interpreted by Price, Ewens and Edwards.
A Characterization of Entropy in Terms of Information Loss
There are numerous characterizations of Shannon entropy and Tsallis entropy as measures of information obeying certain properties. Using work by Faddeev and Furuichi, we derive a very simple characterization. Instead of focusing on the entropy of a probability measure on a finite set, this characterization focuses on the “information loss”, or change in entropy, associated with a measure-preserving function. Information loss is a special case of conditional entropy: namely, it is the entropy of a random variable conditioned on some function of that variable. We show that Shannon entropy gives the only concept of information loss that is functorial, convex-linear and continuous. This characterization naturally generalizes to Tsallis entropy as well.
Relative Entropy in Biological Systems
In this paper we review various information-theoretic characterizations of the approach to equilibrium in biological systems. The replicator equation, evolutionary game theory, Markov processes and chemical reaction networks all describe the dynamics of a population or probability distribution. Under suitable assumptions, the distribution will approach an equilibrium with the passage of time. Relative entropy—that is, the Kullback–Leibler divergence, or various generalizations of this—provides a quantitative measure of how far from equilibrium the system is. We explain various theorems that give conditions under which relative entropy is nonincreasing. In biochemical applications these results can be seen as versions of the Second Law of Thermodynamics, stating that free energy can never increase with the passage of time. In ecological applications, they make precise the notion that a population gains information from its environment as it approaches equilibrium.
Quantum Techniques for Reaction Networks
Reaction networks are a general formalism for describing collections of classical entities interacting in a random way. While reaction networks are mainly studied by chemists, they are equivalent to Petri nets, which are used for similar purposes in computer science and biology. As noted by Doi and others, techniques from quantum physics, such as second quantization, can be adapted to apply to such systems. Here we use these techniques to study how the “master equation” describing stochastic time evolution for a reaction network is related to the “rate equation” describing the deterministic evolution of the expected number of particles of each species in the large-number limit. We show that the relation is especially strong when a solution of master equation is a “coherent state”, meaning that the numbers of entities of each kind are described by independent Poisson distributions. Remarkably, in this case the rate equation and master equation give the exact same formula for the time derivative of the expected number of particles of each species.
Quantropy
There is a well-known analogy between statistical and quantum mechanics. In statistical mechanics, Boltzmann realized that the probability for a system in thermal equilibrium to occupy a given state is proportional to \\((-E/kT)\\), where \\(E\\) is the energy of that state. In quantum mechanics, Feynman realized that the amplitude for a system to undergo a given history is proportional to \\((-S/i)\\), where \\(S\\) is the action of that history. In statistical mechanics, we can recover Boltzmann's formula by maximizing entropy subject to a constraint on the expected energy. This raises the question: what is the quantum mechanical analogue of entropy? We give a formula for this quantity, which we call ``quantropy''. We recover Feynman's formula from assuming that histories have complex amplitudes, that these amplitudes sum to one and that the amplitudes give a stationary point of quantropy subject to a constraint on the expected action. Alternatively, we can assume the amplitudes sum to one and that they give a stationary point of a quantity that we call ``free action'', which is analogous to free energy in statistical mechanics. We compute the quantropy, expected action and free action for a free particle and draw some conclusions from the results.
Convenient categories of smooth spaces
A ‘Chen space’ is a set XX equipped with a collection of ‘plots’, i.e., maps from convex sets to XX, satisfying three simple axioms. While an individual Chen space can be much worse than a smooth manifold, the category of all Chen spaces is much better behaved than the category of smooth manifolds. For example, any subspace or quotient space of a Chen space is a Chen space, and the space of smooth maps between Chen spaces is again a Chen space. Souriau’s ‘diffeological spaces’ share these convenient properties. Here we give a unified treatment of both formalisms. Following ideas of Penon and Dubuc, we show that Chen spaces, diffeological spaces, and even simplicial complexes are examples of ‘concrete sheaves on a concrete site’. As a result, the categories of such spaces are locally Cartesian closed, with all limits, all colimits, and a weak subobject classifier. For the benefit of differential geometers, our treatment explains most of the category theory we use.
G2AND THE ROLLING BALL
Understanding the exceptional Lie groups as the symmetry groups of simpler objects is a long-standing program in mathematics. Here, we explore one famous realization of the smallest exceptional Lie group, G2. Its Lie algebra 𝔤2 acts locally as the symmetries of a ball rolling on a larger ball, but only when the ratio of radii is 1:3. Using the split octonions, we devise a similar, but more global, picture of G2: it acts as the symmetries of a 'spinorial ball rolling on a projective plane', again when the ratio of radii is 1:3. We explain this ratio in simple terms, use the dot product and cross product of split octonions to describe the G2 incidence geometry, and show how a form of geometric quantization applied to this geometry lets us recover the imaginary split octonions and these operations.