Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
323 result(s) for "Bagshaw, Sean M."
Sort by:
Epidemiology of Acute Kidney Injury in Critically Ill Children and Young Adults
Most children with serious acute illness do not have underlying chronic conditions. This prospective study involving patients in pediatric intensive care units showed that acute kidney injury is common and is associated with poor outcomes, including increased mortality. Epidemiologic studies involving adults have shown that acute kidney injury is associated with increased mortality, prolonged mechanical ventilation, and prolonged length of stay in intensive care units (ICUs). 1 – 3 A multinational, prospective study involving 1802 adults 3 initiated the use of Kidney Disease: Improving Global Outcomes (KDIGO) guidelines to describe the epidemiology of acute kidney injury; the guidelines 4 define and stage acute kidney injury according to the plasma creatinine level and urine output (Table S1 in the Supplementary Appendix, available with the full text of this article at NEJM.org). That study showed graded associations between the severity of acute kidney injury and . . .
The impact of frailty on intensive care unit outcomes: a systematic review and meta-analysis
Purpose Functional status and chronic health status are important baseline characteristics of critically ill patients. The assessment of frailty on admission to the intensive care unit (ICU) may provide objective, prognostic information on baseline health. To determine the impact of frailty on the outcome of critically ill patients, we performed a systematic review and meta-analysis comparing clinical outcomes in frail and non-frail patients admitted to ICU. Methods We searched the Cochrane Central Register of Controlled Trials, MEDLINE, EMBASE, PubMed, CINAHL, and Clinicaltrials.gov. All study designs with the exception of narrative reviews, case reports, and editorials were included. Included studies assessed frailty in patients greater than 18 years of age admitted to an ICU and compared outcomes between fit and frail patients. Two reviewers independently applied eligibility criteria, assessed quality, and extracted data. The primary outcomes were hospital and long-term mortality. We also determined the prevalence of frailty, the impact on other patient-centered outcomes such as discharge disposition, and health service utilization such as length of stay. Results Ten observational studies enrolling a total of 3030 patients (927 frail and 2103 fit patients) were included. The overall quality of studies was moderate. Frailty was associated with higher hospital mortality [relative risk (RR) 1.71; 95% CI 1.43, 2.05; p  < 0.00001; I 2  = 32%] and long-term mortality (RR 1.53; 95% CI 1.40, 1.68; p  < 0.00001; I 2  = 0%). The pooled prevalence of frailty was 30% (95% CI 29–32%). Frail patients were less likely to be discharged home than fit patients (RR 0.59; 95% CI 0.49, 0.71; p  < 0.00001; I 2  = 12%). Conclusions Frailty is common in patients admitted to ICU and is associated with worsened outcomes. Identification of this previously unrecognized and vulnerable ICU population should act as the impetus for investigating and implementing appropriate care plans for critically ill frail patients. Registration: PROSPERO (ID: CRD42016053910).
Sepsis-associated acute kidney injury: consensus report of the 28th Acute Disease Quality Initiative workgroup
Sepsis-associated acute kidney injury (SA-AKI) is common in critically ill patients and is strongly associated with adverse outcomes, including an increased risk of chronic kidney disease, cardiovascular events and death. The pathophysiology of SA-AKI remains elusive, although microcirculatory dysfunction, cellular metabolic reprogramming and dysregulated inflammatory responses have been implicated in preclinical studies. SA-AKI is best defined as the occurrence of AKI within 7 days of sepsis onset (diagnosed according to Kidney Disease Improving Global Outcome criteria and Sepsis 3 criteria, respectively). Improving outcomes in SA-AKI is challenging, as patients can present with either clinical or subclinical AKI. Early identification of patients at risk of AKI, or at risk of progressing to severe and/or persistent AKI, is crucial to the timely initiation of adequate supportive measures, including limiting further insults to the kidney. Accordingly, the discovery of biomarkers associated with AKI that can aid in early diagnosis is an area of intensive investigation. Additionally, high-quality evidence on best-practice care of patients with AKI, sepsis and SA-AKI has continued to accrue. Although specific therapeutic options are limited, several clinical trials have evaluated the use of care bundles and extracorporeal techniques as potential therapeutic approaches. Here we provide graded recommendations for managing SA-AKI and highlight priorities for future research.Sepsis-associated acute kidney injury (SA-AKI) is linked with poor outcomes in critically ill patients. This Consensus Statement from the Acute Disease Quality Initiative discusses the definition, epidemiology and pathophysiology of SA-AKI, fluid, resuscitation and extracorporeal therapies, and the role of biomarkers in risk stratification and diagnosis.
The status of intensive care medicine research and a future agenda for very old patients in the ICU
The “very old intensive care patients” (abbreviated to VOPs; greater than 80 years old) are probably the fastest expanding subgroup of all intensive care unit (ICU) patients. Up until recently most ICU physicians have been reluctant to admit these VOPs. The general consensus was that there was little survival to gain and the incremental life expectancy of ICU admission was considered too small. Several publications have questioned this belief, but others have confirmed the poor long-term mortality rates in VOPs. More appropriate triage (resource limitation enforced decisions), admission decisions based on shared decision-making and improved prediction models are also needed for this particular patient group. Here, an expert panel proposes a research agenda for VOPs for the coming years.
Acute kidney disease and renal recovery: consensus report of the Acute Disease Quality Initiative (ADQI) 16 Workgroup
Acute kidney injury (AKI) and chronic kidney disease are increasingly recognized as interconnected entities and the term acute kidney disease (AKD) has been proposed to define ongoing pathophysiologic processes following an episode of AKI. In this Consensus statement, the Acute Disease Quality Initiative 16 Workgroup propose definitions and staging criteria for AKD, and strategies for the management of affected patients. They also make recommendations for areas of future research with the aims of improving understanding of the underlying processes and improving outcomes. Consensus definitions have been reached for both acute kidney injury (AKI) and chronic kidney disease (CKD) and these definitions are now routinely used in research and clinical practice. The KDIGO guideline defines AKI as an abrupt decrease in kidney function occurring over 7 days or less, whereas CKD is defined by the persistence of kidney disease for a period of >90 days. AKI and CKD are increasingly recognized as related entities and in some instances probably represent a continuum of the disease process. For patients in whom pathophysiologic processes are ongoing, the term acute kidney disease (AKD) has been proposed to define the course of disease after AKI; however, definitions of AKD and strategies for the management of patients with AKD are not currently available. In this consensus statement, the Acute Disease Quality Initiative (ADQI) proposes definitions, staging criteria for AKD, and strategies for the management of affected patients. We also make recommendations for areas of future research, which aim to improve understanding of the underlying processes and improve outcomes for patients with AKD.
Biomarkers for prediction of renal replacement therapy in acute kidney injury: a systematic review and meta-analysis
PurposeAcute kidney injury (AKI) frequently occurs in critically ill patients and often precipitates use of renal replacement therapy (RRT). However, the ideal circumstances for whether and when to start RRT remain unclear. We performed evidence synthesis of the available literature to evaluate the value of biomarkers to predict receipt of RRT for AKI.MethodsWe conducted a PRISMA-guided systematic review and meta-analysis including all trials evaluating biomarker performance for prediction of RRT in AKI. A systematic search was applied in MEDLINE, Embase, and CENTRAL databases from inception to September 2017. All studies reporting an area under the curve (AUC) for a biomarker to predict initiation of RRT were included.ResultsSixty-three studies comprising 15,928 critically ill patients (median per study 122.5 [31–1439]) met eligibility. Forty-one studies evaluating 13 different biomarkers were included. Of these biomarkers, neutrophil gelatinase-associated lipocalin (NGAL) had the largest body of evidence. The pooled AUCs for urine and blood NGAL were 0.720 (95% CI 0.638–0.803) and 0.755 (0.706–0.803), respectively. Blood creatinine and cystatin C had pooled AUCs of 0.764 (0.732–0.796) and 0.768 (0.729–0.807), respectively. For urine biomarkers, interleukin-18, cystatin C, and the product of tissue inhibitor of metalloproteinase-2 and insulin growth factor binding protein-7 showed pooled AUCs of 0.668 (0.606–0.729), 0.722 (0.575–0.868), and 0.857 (0.789–0.925), respectively.ConclusionThough several biomarkers showed promise and reasonable prediction of RRT use for critically ill patients with AKI, the strength of evidence currently precludes their routine use to guide decision-making on when to initiate RRT.
Precision management of acute kidney injury in the intensive care unit: current state of the art
Acute kidney injury (AKI) is a prototypical example of a common syndrome in critical illness defined by consensus. The consensus definition for AKI, traditionally defined using only serum creatinine and urine output, was needed to standardize the description for epidemiology and to harmonize eligibility for clinical trials. However, AKI is not a simple disease, but rather a complex and multi-factorial syndrome characterized by a wide spectrum of pathobiology. AKI is now recognized to be comprised of numerous sub-phenotypes that can be discriminated through shared features such as etiology, prognosis, or common pathobiological mechanisms of injury and damage. The characterization of sub-phenotypes can serve to enable prognostic enrichment (i.e., identify subsets of patients more likely to share an outcome of interest) and predictive enrichment (identify subsets of patients more likely to respond favorably to a given therapy). Existing and emerging biomarkers will aid in discriminating sub-phenotypes of AKI, facilitate expansion of diagnostic criteria, and be leveraged to realize personalized approaches to management, particularly for recognizing treatment-responsive mechanisms (i.e., endotypes) and targets for intervention (i.e., treatable traits). Specific biomarkers (e.g., serum renin; olfactomedin 4 (OLFM4); interleukin (IL)-9) may further enable identification of pathobiological mechanisms to serve as treatment targets. However, even non-specific biomarkers of kidney injury (e.g., neutrophil gelatinase-associated lipocalin, NGAL; [tissue inhibitor of metalloproteinases 2, TIMP2]·[insulin like growth factor binding protein 7, IGFBP7]; kidney injury molecule 1, KIM-1) can direct greater precision management for specific sub-phenotypes of AKI. This review will summarize these evolving concepts and recent innovations in precision medicine approaches to the syndrome of AKI in critical illness, along with providing examples of how they can be leveraged to guide patient care.
Lung–kidney interactions in critically ill patients: consensus report of the Acute Disease Quality Initiative (ADQI) 21 Workgroup
BackgroundMulti-organ dysfunction in critical illness is common and frequently involves the lungs and kidneys, often requiring organ support such as invasive mechanical ventilation (IMV), renal replacement therapy (RRT) and/or extracorporeal membrane oxygenation (ECMO).MethodsA consensus conference on the spectrum of lung–kidney interactions in critical illness was held under the auspices of the Acute Disease Quality Initiative (ADQI) in Innsbruck, Austria, in June 2018. Through review and critical appraisal of the available evidence, the current state of research, and both clinical and research recommendations were described on the following topics: epidemiology, pathophysiology and strategies to mitigate pulmonary dysfunction among patients with acute kidney injury and/or kidney dysfunction among patients with acute respiratory failure/acute respiratory distress syndrome. Furthermore, emphasis was put on patients receiving organ support (RRT, IMV and/or ECMO) and its impact on lung and kidney function.ConclusionThe ADQI 21 conference found significant knowledge gaps about organ crosstalk between lung and kidney and its relevance for critically ill patients. Lung protective ventilation, conservative fluid management and early recognition and treatment of pulmonary infections were the only clinical recommendations with higher quality of evidence. Recommendations for research were formulated, targeting lung–kidney interactions to improve care processes and outcomes in critical illness.
Epidemiology of acute kidney injury in critically ill patients: the multinational AKI-EPI study
Purpose Current reports on acute kidney injury (AKI) in the intensive care unit (ICU) show wide variation in occurrence rate and are limited by study biases such as use of incomplete AKI definition, selected cohorts, or retrospective design. Our aim was to prospectively investigate the occurrence and outcomes of AKI in ICU patients. Methods The Acute Kidney Injury–Epidemiologic Prospective Investigation (AKI-EPI) study was an international cross-sectional study performed in 97 centers on patients during the first week of ICU admission. We measured AKI by Kidney Disease: Improving Global Outcomes (KDIGO) criteria, and outcomes at hospital discharge. Results A total of 1032 ICU patients out of 1802 [57.3 %; 95 % confidence interval (CI) 55.0–59.6] had AKI. Increasing AKI severity was associated with hospital mortality when adjusted for other variables; odds ratio of stage 1 = 1.679 (95 % CI 0.890–3.169; p  = 0.109), stage 2 = 2.945 (95 % CI 1.382–6.276; p  = 0.005), and stage 3 = 6.884 (95 % CI 3.876–12.228; p  < 0.001). Risk-adjusted rates of AKI and mortality were similar across the world. Patients developing AKI had worse kidney function at hospital discharge with estimated glomerular filtration rate less than 60 mL/min/1.73 m 2 in 47.7 % (95 % CI 43.6–51.7) versus 14.8 % (95 % CI 11.9–18.2) in those without AKI, p  < 0.001. Conclusions This is the first multinational cross-sectional study on the epidemiology of AKI in ICU patients using the complete KDIGO criteria. We found that AKI occurred in more than half of ICU patients. Increasing AKI severity was associated with increased mortality, and AKI patients had worse renal function at the time of hospital discharge. Adjusted risks for AKI and mortality were similar across different continents and regions.