Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Language
      Language
      Clear All
      Language
  • Subject
      Subject
      Clear All
      Subject
  • Item Type
      Item Type
      Clear All
      Item Type
  • Discipline
      Discipline
      Clear All
      Discipline
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
286 result(s) for "Bahramian, A."
Sort by:
A radio transient with unusually slow periodic emission
The high-frequency radio sky is bursting with synchrotron transients from massive stellar explosions and accretion events, but the low-frequency radio sky has, so far, been quiet beyond the Galactic pulsar population and the long-term scintillation of active galactic nuclei. The low-frequency band, however, is sensitive to exotic coherent and polarized radio-emission processes, such as electron-cyclotron maser emission from flaring M dwarfs 1 , stellar magnetospheric plasma interactions with exoplanets 2 and a population of steep-spectrum pulsars 3 , making Galactic-plane searches a prospect for blind-transient discovery. Here we report an analysis of archival low-frequency radio data that reveals a periodic, low-frequency radio transient. We find that the source pulses every 18.18 min, an unusual periodicity that has, to our knowledge, not been observed previously. The emission is highly linearly polarized, bright, persists for 30–60 s on each occurrence and is visible across a broad frequency range. At times, the pulses comprise short-duration (<0.5 s) bursts; at others, a smoother profile is observed. These profiles evolve on timescales of hours. By measuring the dispersion of the radio pulses with respect to frequency, we have localized the source to within our own Galaxy and suggest that it could be an ultra-long-period magnetar. Analysis of archival low-frequency radio data from the Murchison Widefield Array reveals a periodic transient with an unusual periodicity of 18.18 min, the source of which is localized to our Galaxy and could be an ultra-long-period magnetar.
A long-period radio transient active for three decades
Several long-period radio transients have recently been discovered, with strongly polarized coherent radio pulses appearing on timescales between tens to thousands of seconds 1 , 2 . In some cases, the radio pulses have been interpreted as coming from rotating neutron stars with extremely strong magnetic fields, known as magnetars; the origin of other, occasionally periodic and less-well-sampled radio transients is still debated 3 . Coherent periodic radio emission is usually explained by rotating dipolar magnetic fields and pair-production mechanisms, but such models do not easily predict radio emission from such slowly rotating neutron stars and maintain it for extended times. On the other hand, highly magnetic isolated white dwarfs would be expected to have long spin periodicities, but periodic coherent radio emission has not yet been directly detected from these sources. Here we report observations of a long-period (21 min) radio transient, which we have labelled GPM J1839–10. The pulses vary in brightness by two orders of magnitude, last between 30 and 300 s and have quasiperiodic substructure. The observations prompted a search of radio archives and we found that the source has been repeating since at least 1988. The archival data enabled constraint of the period derivative to <3.6 × 10 −13  s s −1 , which is at the very limit of any classical theoretical model that predicts dipolar radio emission from an isolated neutron star. The discovery of a long-period radio transient, GPM J1839–10, prompted a search of radio archives, thereby finding that this source has been repeating since at least 1988.
Olfactory discrimination predicts cognitive decline among community-dwelling older adults
The presence of olfactory dysfunction in individuals at higher risk of Alzheimer's disease has significant diagnostic and screening implications for preventive and ameliorative drug trials. Olfactory threshold, discrimination and identification can be reliably recorded in the early stages of neurodegenerative diseases. The current study has examined the ability of various olfactory functions in predicting cognitive decline in a community-dwelling sample. A group of 308 participants, aged 46–86 years old, were recruited for this study. After 3 years of follow-up, participants were divided into cognitively declined and non-declined groups based on their performance on a neuropsychological battery. Assessment of olfactory functions using the Sniffin’ Sticks battery indicated that, contrary to previous findings, olfactory discrimination, but not olfactory identification, significantly predicted subsequent cognitive decline (odds ratio=0.869; P <0.05; 95% confidence interval=0.764−0.988). The current study findings confirm previously reported associations between olfactory and cognitive functions, and indicate that impairment in olfactory discrimination can predict future cognitive decline. These findings further our current understanding of the association between cognition and olfaction, and support olfactory assessment in screening those at higher risk of dementia.
Influence of New SiO2 Nanofluids on Surface Wettability and Interfacial Tension Behaviour between Oil-Water Interface in EOR Processes
Fine SiO2 nanosphericals (2-5nm) and new various stable nanofluids including Tween 80, Span 80, Lauric alcohol-3EO, CTAB, SDS and K-Laurate surfactants in water or paraffin based solution were used as new SiO2 nanoproducts in oil recovery. These nanofluids can strongly change oil-wet carbonate reservoir rock to complete water-wet wettability and showed an excellent trend of surface tension (S.T) and IFT (interfacial tension) reduction in comparison with pure water and reference solutions. The CaCO3 plates reservoir was then aged for 2, 5 and 8 days into the 1, 3 and 8% of different concentrations of synthesized SiO2 nanofluids (effect of various concentrations via different aging time). Air/water and n-decane/water contact angles on oil-wet and clean carbonate rock aged in designed SiO2 nanofluids were measured and the pH value as a significant factor estimated. The interesting influence of microwave irradiation on surface tension and IFT including various SiO2 nanofluids was investigated after 12 min which some of the especial nanofluid concentrations showed successful reduction. Our findings indicated the important effect of temperature over decreasing of surface tension and IFT between oil and water interface including SiO2 nanofluids after annealing at 70°C. Therefore, this phenomenon can be significantly capable and valuable in applying of new technology in the fabrication of novel nanofluids in EOR processes and saving source of energy regarding to conventional production.
Computer Simulation on TiO2 Nanostructure Films and Experimental Study Using Sol–Gel Method
Molecular dynamics simulation with an experimental work was performed on the TiO 2 nanostructure film. The Morse potential function was used for the interatomic interactions. Then, the equations of motion for molecules and atoms are solved by Verlet algorithm. The effects of deposition rate and the number of TiO 2 molecules were studied for morphology characterization of film surface. In addition, TiO 2 nanostructure film was prepared experimentally with the sol–gel dip-coating method. The results of MD simulations provide a reasonable compatibility with Dektak surface profiler, atomic force microscopy (AFM) and scanning electron microscopy (SEM) images due to the morphology and surface structure of films.
Molecular characterization of the pilS2 gene and its association with the frequency of Pseudomonas aeruginosa plasmid pKLC102 and PAPI-1 pathogenicity island
is the most common opportunistic pathogen associated with a broad range of infections, including cystic fibrosis, ocular, otitis media, and burn infections. The aim of this study was to show the frequency of the gene, and its association with plasmid pKLC102 and PAPI-1 pathogenicity island among strains. The samples were collected from patients with cystic fibrosis, ocular, otitis media, and burn infections between January 2016 and November 2017. DNA was extracted using the DNA extraction kit and was used for PCR assay. PCR with 4 primer-pairs including 976 F/PAPI-1R, 4542 F/intF, SojR/4541 F, and intF/sojR was performed to identify PAPI-1. pKLC102 was detected using three other primer-pairs including cp10F/cp10R, cp44F/cp44R, and cp97F/cp97R. A total of 112 . isolates were collected from patients with cystic fibrosis (36), burn (20), otitis media (26), and ocular (30) infections. The results of PCR showed that gene was identified in 96 (85%) strains. PAPI-1-attB integration was detected among 38 (33.9%) isolates and the circular form of PAPI-1 detected among 17 (14%) isolates. In addition, 79 (70.5%) strains were found to be positive for pKLC102. We found that the majority of the isolates may be susceptible to transfer this significant island and the related element pKLC102 into recipient isolates lacking the island owing to high association of the PilS2 pilus with the islands in the studied strains. It is anticipated that strains isolated from burn and eye with the highest rate of , PAPI-1, and pKLC102 association have a high level of antibiotic resistance.
The early radio afterglow of short GRB 230217A
We present the radio afterglow of short gamma-ray burst (GRB) 230217A, which was detected less than 1 day after the gamma-ray prompt emission with the Australia Telescope Compact Array (ATCA) and the Karl G. Jansky Very Large Array (VLA). The ATCA rapid-response system automatically triggered an observation of GRB 230217A following its detection by the Neil Gehrels Swift Observatory and began observing the event just 32 minutes post-burst at 5.5 and 9 GHz for 7 hours. Dividing the 7-hour observation into three time-binned images allowed us to obtain radio detections with logarithmic central times of 1, 2.8 and 5.2 hours post-burst, the first of which represents the earliest radio detection of any GRB to date. The decline of the light curve is consistent with reverse shock emission if the observing bands are below the spectral peak and not affected by synchrotron self-absorption. This makes GRB 230217A the fifth short GRB with radio detections attributed to a reverse shock at early times (\\(<1\\) day post-burst). Following brightness temperature arguments, we have used our early radio detections to place the highest minimum Lorentz factor (\\({\\Gamma}_{min} > 50\\) at \\(\\sim1\\) hour) constraints on a GRB in the radio band. Our results demonstrate the importance of rapid radio follow-up observations with long integrations and good sensitivity for detecting the fast-evolving radio emission from short GRBs and probing their reverse shocks.
Tracking the Enigmatic Globular Cluster Ultracompact X-ray Binary X1850--087: Extreme Radio Variability in the Hard State
The conditions under which accreting neutron stars launch radio-emitting jets and/or outflows are still poorly understood. The ultracompact X-ray binary X1850--087, located in the globular cluster NGC 6712, is a persistent atoll-type X-ray source that has previously shown unusual radio continuum variability. Here we present the results of a pilot radio monitoring program of X1850--087 undertaken with the Karl G. Jansky Very Large Array, with simultaneous or quasi-simultaneous Swift/XRT data obtained at each epoch. The binary is clearly detected in the radio in two of the six new epochs. When combined with previous data, these results suggest that X1850--087 shows radio emission at a slightly elevated hard state X-ray luminosity of L_X > 2x10^36 erg/s, but no radio emission in its baseline hard state L_X ~10^36 erg/s. No clear X-ray spectral changes are associated with this factor of > 10 radio variability. At all detected epochs X1850--087 has a flat-to-inverted radio spectral index, more consistent with the partially absorbed optically thick synchrotron of a compact jet rather than the evolving optically thick to thin emission associated with transient expanding synchrotron-emitting ejecta. If the radio emission in X1850--087 is indeed due to a compact jet, then it is plausibly being launched and quenched in the hard state on timescales as short as a few days. Future radio monitoring of X1850--087 could help elucidate the conditions under which compact jets are produced around hard state accreting neutron stars.
Distances to Galactic X-ray Binaries with Gaia DR2
Precise and accurate measurements of distances to Galactic X-ray binaries (XRBs) reduce uncertainties in the determination of XRB physical parameters. We have cross-matched the XRB catalogues of Liu et al. (2006, 2007) to the results of Gaia Data Release 2. We identify 86 X-ray binaries with a Gaia candidate counterpart, of which 32 are low-mass X-ray binaries (LMXBs) and 54 are high-mass X-ray binaries (HMXBs). Distances to Gaia candidate counterparts are, on average, consistent with those measured by Hipparcos and radio parallaxes. When compared to distances measured by Gaia candidate counterparts, distances measured using Type I X-ray bursts are systematically larger, suggesting that these bursts reach only 50% of the Eddington limit. However, these results are strongly dependent on the prior assumptions used for estimating distance from the Gaia parallax measurements. Comparing positions of Gaia candidate counterparts for XRBs in our sample to positions of spiral arms in the Milky Way, we find that HMXBs exhibit mild preference for being closer to spiral arms; LMXBs exhibit mild preference for being closer to inter-arm regions. LMXBs do not exhibit any preference for leading or trailing their closest spiral arm. HMXBs exhibit a mild preference for trailing their closest spiral arm. The lack of a strong correlation between HMXBs and spiral arms may be explained by star formation occurring closer to the midpoint of the arms, or a time delay between star formation and HMXB formation manifesting as a spatial separation between HMXBs and the spiral arm where they formed.
MAXI J1848-015: The First Detection of Relativistically Moving Outflows from a Globular Cluster X-ray Binary
Over the past decade, observations of relativistic outflows from outbursting X-ray binaries in the Galactic field have grown significantly. In this work, we present the first detection of moving and decelerating radio-emitting outflows from an X-ray binary in a globular cluster. MAXI J1848-015 is a recently discovered transient X-ray binary in the direction of the globular cluster GLIMPSE-C01. Using observations from the VLA, and a monitoring campaign with the MeerKAT observatory for 500 days, we model the motion of the outflows. This represents some of the most intensive, long-term coverage of relativistically moving X-ray binary outflows to date. We use the proper motions of the outflows from MAXI J1848-015 to constrain the component of the intrinsic jet speed along the line of sight, \\(\\beta_\\textrm{int} \\cos \\theta_\\textrm{ejection}\\), to be \\(=0.19\\pm0.02\\). Assuming it is located in GLIMPSE-C01, at 3.4 kpc, we determine the intrinsic jet speed, \\(\\beta_\\textrm{int}=0.79\\pm0.07\\), and the inclination angle to the line of sight, \\(\\theta_\\textrm{ejection}=76^\\circ\\pm2^{\\circ}\\). This makes the outflows from MAXI J1848-015 somewhat slower than those seen from many other known X-ray binaries. We also constrain the maximum distance to MAXI J1848-015 to be \\(4.3\\) kpc. Lastly, we discuss the implications of our findings for the nature of the compact object in this system, finding that a black hole primary is a viable (but as-of-yet unconfirmed) explanation for the observed properties of MAXI J1848-015. If future data and/or analysis provide more conclusive evidence that MAXI J1848-015 indeed hosts a black hole, it would be the first black hole X-ray binary in outburst identified in a Galactic globular cluster.