Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
40
result(s) for
"Bailleul, Benjamin"
Sort by:
The fine-tuning of NPQ in diatoms relies on the regulation of both xanthophyll cycle enzymes
2021
Diatoms possess an efficient mechanism to dissipate photons as heat in conditions of excess light, which is visualized as the Non-Photochemical Quenching of chlorophyll
a
fluorescence (NPQ). In most diatom species, NPQ is proportional to the concentration of the xanthophyll cycle pigment diatoxanthin formed from diadinoxanthin by the diadinoxanthin de-epoxidase enzyme. The reverse reaction is performed by the diatoxanthin epoxidase. Despite the xanthophyll cycle’s central role in photoprotection, its regulation is not yet well understood. The proportionality between diatoxanthin and NPQ allowed us to calculate the activity of both xanthophyll cycle enzymes in the model diatom
Phaeodactylum tricornutum
from NPQ kinetics. From there, we explored the light-dependency of the activity of both enzymes. Our results demonstrate that a tight regulation of both enzymes is key to fine-tune NPQ: (i) the rate constant of diadinoxanthin de-epoxidation is low under a light-limiting regime but increases as photosynthesis saturates, probably due to the thylakoidal proton gradient ΔpH (ii) the rate constant of diatoxanthin epoxidation exhibits an optimum under low light and decreases in the dark due to an insufficiency of the co-factor NADPH as well as in higher light through an as yet unresolved inhibition mechanism, that is unlikely to be related to the ΔpH. We observed that the suppression of NPQ by an uncoupler was due to an accelerated diatoxanthin epoxidation enzyme rather than to the usually hypothesized inhibition of the diadinoxanthin de-epoxidation enzyme.
Journal Article
Pennate diatoms make non-photochemical quenching as simple as possible but not simpler
by
Jaubert, Marianne
,
Bailleul, Benjamin
,
Croteau, Dany
in
631/449/1734/2687
,
631/449/2686
,
631/57/2267
2025
Studies of marine microalgal photosynthesis are heavily moulded on legacy research from organisms like
Arabidopsis
and
Chlamydomonas
, despite the differences between primary and secondary endosymbionts. Non-photochemical quenching (NPQ) protects photosystem II from excessive light and, in pennate diatoms, requires the xanthophyll pigment diatoxanthin and Lhcx proteins. Although NPQ’s relationship with diatoxanthin is straightforward, the role of Lhcx proteins has been unclear and at the core of several conflicting NPQ models, often unnecessarily borrowing the complexity of models from green organisms. We use 14
Phaeodactylum tricornutum
strains, including 13 transgenic lines with variable
Lhcx1
expression levels, grow them under two non-stressful light conditions, and modulate diatoxanthin levels through short light stress. The resulting Lhcx1-diatoxanthin matrices are used to demonstrate that NPQ is proportional to the product of the Lhcx1 concentration and the proportion of diatoxanthin in the xanthophyll pool. This indicates that the interaction between diatoxanthin and Lhcx1 creates a homogeneous Stern-Volmer quencher responsible for NPQ. Additionally, we demonstrate that the photosynthetic unit in pennate diatoms follows a “lake” model, with discrepancies in the NPQ-photochemistry relationship arising from unconsidered assumptions, one possibility being cellular heterogeneity. This underscores pennate diatoms as natural reductionist system for studying marine photosynthesis.
This study reveals how the interaction between diatoxanthin and Lhcx proteins generates NPQ and protects diatom photosystems from excess light. It positions diatoms as ideal systems to explore marine photosynthesis and light stress responses.
Journal Article
Induction of Photosynthetic Carbon Fixation in Anoxia Relies on Hydrogenase Activity and Proton-Gradient Regulation-Like1-Mediated Cyclic Electron Flow in Chlamydomonas reinhardtii
by
Berne, Nicolas
,
Bailleul, Benjamin
,
Godaux, Damien
in
Anaerobiosis - radiation effects
,
Biochemistry, biophysics & molecular biology
,
Biochimie, biophysique & biologie moléculaire
2015
The model green microalga Chlamydomonas reinhardtii is frequently subject to periods of dark and anoxia in its natural environment. Here, by resorting to mutants defective in the maturation of the chloroplastic oxygen-sensitive hydrogenases or in Proton-Gradient Regulation-Like1 (PGRL1)-dependent cyclic electron flow around photosystem I (PSI-CEF), we demonstrate the sequential contribution of these alternative electron flows (AEFs) in the reactivation of photosynthetic carbon fixation during a shift from dark anoxia to light. At light onset, hydrogenase activity sustains a linear electron flow from photosystem II, which is followed by a transient PSI-CEF in the wild type. By promoting ATP synthesis without net generation of photosynthetic reductants, the two AEF are critical for restoration of the capacity for carbon dioxide fixation in the light. Our data also suggest that the decrease in hydrogen evolution with time of illumination might be due to competition for reduced ferredoxins between ferredoxin-NADP(+) oxidoreductase and hydrogenases, rather than due to the sensitivity of hydrogenase activity to oxygen. Finally, the absence of the two alternative pathways in a double mutant pgrl1 hydrogenase maturation factor G-2 is detrimental for photosynthesis and growth and cannot be compensated by any other AEF or anoxic metabolic responses. This highlights the role of hydrogenase activity and PSI-CEF in the ecological success of microalgae in low-oxygen environments.
Journal Article
PSI Mehler reaction is the main alternative photosynthetic electron pathway in Symbiodinium sp., symbiotic dinoflagellates of cnidarians
by
Berne, Nicolas
,
Bailleul, Benjamin
,
Franck, Fabrice
in
absorption
,
adenosine triphosphate
,
Amplitude
2014
Photosynthetic organisms have developed various photoprotective mechanisms to cope with exposure to high light intensities. In photosynthetic dinoflagellates that live in symbiosis with cnidarians, the nature and relative amplitude of these regulatory mechanisms are a matter of debate. In our study, the amplitude of photosynthetic alternative electron flows (AEF) to oxygen (chlororespiration, Mehler reaction), the mitochondrial respiration and the Photosystem I (PSI) cyclic electron flow were investigated in strains belonging to three clades (A1, B1 and F1) of Symbiodinium. Cultured Symbiodinium strains were maintained under identical environmental conditions, and measurements of oxygen evolution, fluorescence emission and absorption changes at specific wavelengths were used to evaluate PSI and PSII electron transfer rates (ETR). A light‐ and O₂‐dependent ETR was observed in all strains. This electron transfer chain involves PSII and PSI and is insensitive to inhibitors of mitochondrial activity and carbon fixation. We demonstrate that in all strains, the Mehler reaction responsible for photoreduction of oxygen by the PSI under high light, is the main AEF at the onset and at the steady state of photosynthesis. This sustained photosynthetic AEF under high light intensities acts as a photoprotective mechanism and leads to an increase of the ATP/NADPH ratio.
Journal Article
Energetic coupling between plastids and mitochondria drives CO2 assimilation in diatoms
by
ANR-10-IDEX-0001,PSL,Paris Sciences et Lettres
,
Berne, Nicolas
,
Institut de biologie de l'ENS Paris (IBENS) ; Département de Biologie - ENS-PSL (IBENS) ; École normale supérieure - Paris (ENS-PSL) ; Université Paris Sciences et Lettres (PSL)-Université Paris Sciences et Lettres (PSL)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)-École normale supérieure - Paris (ENS-PSL) ; Université Paris Sciences et Lettres (PSL)-Université Paris Sciences et Lettres (PSL)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)
in
631/449/1734
,
9/10
,
Adenosine Triphosphate - metabolism
2015
Diatoms are one of the most ecologically successful classes of photosynthetic marine eukaryotes in the contemporary oceans. Over the past 30 million years, they have helped to moderate Earth's climate by absorbing carbon dioxide from the atmosphere, sequestering it via the biological carbon pump and ultimately burying organic carbon in the lithosphere. The proportion of planetary primary production by diatoms in the modern oceans is roughly equivalent to that of terrestrial rainforests. In photosynthesis, the efficient conversion of carbon dioxide into organic matter requires a tight control of the ATP/NADPH ratio which, in other photosynthetic organisms, relies principally on a range of plastid-localized ATP generating processes. Here we show that diatoms regulate ATP/NADPH through extensive energetic exchanges between plastids and mitochondria. This interaction comprises the re-routing of reducing power generated in the plastid towards mitochondria and the import of mitochondrial ATP into the plastid, and is mandatory for optimized carbon fixation and growth. We propose that the process may have contributed to the ecological success of diatoms in the ocean.
Journal Article
Probing the electric field across thylakoid membranes in cyanobacteria
by
Nixon, Peter
,
Viola, Stefania
,
Bailleul, Benjamin
in
Algae
,
ATP synthase
,
Biological Sciences
2019
In plants, algae, and some photosynthetic bacteria, the ElectroChromic Shift (ECS) of photosynthetic pigments, which senses the electric field across photosynthetic membranes, is widely used to quantify the activity of the photosynthetic chain. In cyanobacteria, ECS signals have never been used for physiological studies, although they can provide a unique tool to study the architecture and function of the respiratory and photosynthetic electron transfer chains, entangled in the thylakoid membranes. Here, we identified bona fide ECS signals, likely corresponding to carotenoid band shifts, in the model cyanobacteria Synechococcus elongatus PCC7942 and Synechocystis sp. PCC6803. These band shifts, most likely originating from pigments located in photosystem I, have highly similar spectra in the 2 species and can be best measured as the difference between the absorption changes at 500 to 505 nm and the ones at 480 to 485 nm. These signals respond linearly to the electric field and display the basic kinetic features of ECS as characterized in other organisms. We demonstrate that these probes are an ideal tool to study photosynthetic physiology in vivo, e.g., the fraction of PSI centers that are prebound by plastocyanin/cytochrome c₆ in darkness (about 60% in both cyanobacteria, in our experiments), the conductivity of the thylakoid membrane (largely reflecting the activity of the ATP synthase), or the steady-state rates of the photosynthetic electron transport pathways.
Journal Article
Light availability rather than Fe controls the magnitude of massive phytoplankton bloom in the Amundsen Sea polynyas, Antarctica
2017
Amundsen Sea polynyas are among the most productive, yet climate-sensitive ecosystems in the Southern Ocean and host massive annual phytoplankton blooms. These blooms are believed to be controlled by iron fluxes from melting ice and icebergs and by intrusion of nutrient-rich Circumpolar Deep Water, however the interplay between iron effects and other controls, such as light availability, has not yet been quantified. Here, we examine phytoplankton photophysiology in relation to Fe stress and physical forcing in two largest polynyas, Amundsen Sea Polynya (ASP) and Pine Island Polynya (PIP), using the combination of high-resolution variable fluorescence measurements, fluorescence lifetime analysis, photosynthetic rates, and Fe-enrichment incubations. These analyses revealed strong Fe stress in the ASP, whereas the PIP showed virtually no signatures of Fe limitation. In spite of enhanced iron availability in the PIP, chlorophyll biomass remained 30–50% lower than in the Fe-stressed ASP. This apparent paradox would not have been observed if iron were the main control of phytoplankton bloom in the Amundsen Sea. Long-term satellite-based climatology records revealed that the ASP is exposed to significantly higher solar irradiance levels throughout the summer season, as compared to the PIP region, suggesting that light availability controls the magnitude of phytoplankton blooms in the Amundsen Sea. Our data suggests that higher Fe availability (e.g., due to higher melting rates of ice sheets) would not necessarily increase primary productivity in this region. Furthermore, stronger wind-driven vertical mixing in expanding ice-free areas may lead to reduction in light availability and productivity in the future.
Journal Article
An atypical member of the light-harvesting complex stress-related protein family modulates diatom responses to light
by
Rogato, Alessandra
,
Bailleul, Benjamin
,
Institut de biologie de l'ENS Paris (IBENS) ; Département de Biologie - ENS-PSL (IBENS) ; École normale supérieure - Paris (ENS-PSL) ; Université Paris Sciences et Lettres (PSL)-Université Paris Sciences et Lettres (PSL)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)-École normale supérieure - Paris (ENS-PSL) ; Université Paris Sciences et Lettres (PSL)-Université Paris Sciences et Lettres (PSL)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)
in
Acclimatization
,
Algae
,
Antenna
2010
Diatoms are prominent phytoplanktonic organisms that contribute around 40% of carbon assimilation in the oceans. They grow and perform optimally in variable environments, being able to cope with unpredictable changes in the amount and quality of light. The molecular mechanisms regulating diatom light responses are, however, still obscure. Using knockdown Phaeodactylum tricornutum transgenic lines, we reveal the key function of a member of the light-harvesting complex stress-related (LHCSR) protein family, denoted LHCX1, in modulation of excess light energy dissipation. In contrast to green algae, this gene is already maximally expressed in nonstressful light conditions and encodes a protein required for efficient light responses and growth. LHCX1 also influences natural variability in photoresponse, as evidenced in ecotypes isolated from different latitudes that display different LHCX1 protein levels. We conclude, therefore, that this gene plays a pivotal role in managing light responses in diatoms.
Journal Article
Electrochromism: a useful probe to study algal photosynthesis
by
Breyton, Cécile
,
Bailleul, Benjamin
,
Finazzi, Giovanni
in
absorption
,
Acclimatization
,
Acclimatization - radiation effects
2010
In photosynthesis, electron transfer along the photosynthetic chain results in a vectorial transfer of protons from the stroma to the lumenal space of the thylakoids. This promotes the generation of an electrochemical proton gradient (Δμ(H)(+)), which comprises a gradient of electric potential (ΔΨ) and of proton concentration (ΔpH). The Δμ(H)(+) has a central role in the photosynthetic process, providing the energy source for ATP synthesis. It is also involved in many regulatory mechanisms. The ΔpH modulates the rate of electron transfer and triggers deexcitation of excess energy within the light harvesting complexes. The ΔΨ is required for metabolite and protein transport across the membranes. Its presence also induces a shift in the absorption spectra of some photosynthetic pigments, resulting in the so-called ElectroChromic Shift (ECS). In this review, we discuss the characteristic features of the ECS, and illustrate possible applications for the study of photosynthetic processes in vivo.
Journal Article
Death-specific protein in a marine diatom regulates photosynthetic responses to iron and light availability
by
Brown, Christopher M.
,
Thamatrakoln, Kimberlee
,
Bailleul, Benjamin
in
Algae
,
Animal and plant ecology
,
Animal, plant and microbial ecology
2013
Diatoms, unicellular phytoplankton that account for ∼40% of marine primary productivity, often dominate coastal and open-ocean upwelling zones. Limitation of growth and productivity by iron at low light is attributed to an elevated cellular Fe requirement for the synthesis of Fe-rich photosynthetic proteins. In the dynamic coastal environment, Fe concentrations and daily surface irradiance levels can vary by two to three orders of magnitude on short spatial and temporal scales. Although genome-wide studies are beginning to provide insight into the molecular mechanisms used by diatoms to rapidly respond to such fluxes, their functional role in mediating the Fe stress response remains uncharacterized. Here, we show, using reverse genetics, that a death-specific protein (DSP; previously named for its apparent association with cell death) in the coastal diatom Thalassiosira pseudonana (TpDSP1) localizes to the plastid and enhances growth during acute Fe limitation at subsaturating light by increasing the photosynthetic efficiency of carbon fixation. Clone lines overexpressing TpDSP1 had a lower quantum requirement for growth, increased levels of photosynthetic and carbon fixation proteins, and increased cyclic electron flow around photosystem I. Cyclic electron flow is an ATP-producing pathway essential in higher plants and chlorophytes with a heretofore unappreciated role in diatoms. However, cells under replete conditions were characterized as having markedly reduced growth and photosynthetic rates at saturating light, thereby constraining the benefits afforded by overexpression. Widespread distribution of DSP-like sequences in environmental metagenomic and metatranscriptomic datasets highlights the presence and relevance of this protein in natural phytoplankton populations in diverse oceanic regimes.
Journal Article