Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
LanguageLanguage
-
SubjectSubject
-
Item TypeItem Type
-
DisciplineDiscipline
-
YearFrom:-To:
-
More FiltersMore FiltersIs Peer Reviewed
Done
Filters
Reset
285
result(s) for
"Baker, Suzanne J."
Sort by:
Prox1 Is Required for Granule Cell Maturation and Intermediate Progenitor Maintenance During Brain Neurogenesis
by
Chow, Lionel M. L.
,
Baker, Suzanne J.
,
Lavado, Alfonso
in
Adult Stem Cells - cytology
,
Animals
,
Brain
2010
The dentate gyrus has an important role in learning and memory, and adult neurogenesis in the subgranular zone of the dentate gyrus may play a role in the acquisition of new memories. The homeobox gene Prox1 is expressed in the dentate gyrus during embryonic development and adult neurogenesis. Here we show that Prox1 is necessary for the maturation of granule cells in the dentate gyrus during development and for the maintenance of intermediate progenitors during adult neurogenesis. We also demonstrate that Prox1-expressing intermediate progenitors are required for adult neural stem cell self-maintenance in the subgranular zone; thus, we have identified a previously unknown non-cell autonomous regulatory feedback mechanism that controls adult neurogenesis in this region of the mammalian brain. Finally, we show that the ectopic expression of Prox1 induces premature differentiation of neural stem cells.
Journal Article
CICERO: a versatile method for detecting complex and diverse driver fusions using cancer RNA sequencing data
by
Davis, Eric
,
Newman, Scott
,
Edmonson, Michael N.
in
Accuracy
,
Algorithms
,
Animal Genetics and Genomics
2020
To discover driver fusions beyond canonical exon-to-exon chimeric transcripts, we develop CICERO, a local assembly-based algorithm that integrates RNA-seq read support with extensive annotation for candidate ranking. CICERO outperforms commonly used methods, achieving a 95% detection rate for 184 independently validated driver fusions including internal tandem duplications and other non-canonical events in 170 pediatric cancer transcriptomes. Re-analysis of TCGA glioblastoma RNA-seq unveils previously unreported kinase fusions (KLHL7-BRAF) and a 13% prevalence of EGFR C-terminal truncation. Accessible via standard or cloud-based implementation, CICERO enhances driver fusion detection for research and precision oncology. The CICERO source code is available at
https://github.com/stjude/Cicero
.
Journal Article
Structure and evolution of double minutes in diagnosis and relapse brain tumors
2019
Double minute chromosomes are extrachromosomal circular DNA fragments frequently found in brain tumors. To understand their evolution, we characterized the double minutes in paired diagnosis and relapse tumors from a pediatric high-grade glioma and four adult glioblastoma patients. We determined the full structures of the major double minutes using a novel approach combining multiple types of supporting genomic evidence. Among the double minutes identified in the pediatric patient, only one carrying EGFR was maintained at high abundance in both samples, whereas two others were present in only trace amounts at diagnosis but abundant at relapse, and the rest were found either in the relapse sample only or in the diagnosis sample only. For the EGFR-carrying double minutes, we found a secondary somatic deletion in all copies at relapse, after erlotinib treatment. However, the somatic mutation was present at very low frequency at diagnosis, suggesting potential resistance to the EGFR inhibitor. This mutation caused an in-frame RNA transcript to skip exon 16, a novel transcript isoform absent in EST database, as well as about 700 RNA-seq of normal brains that we reviewed. We observed similar patterns involving longitudinal copy number shift of double minutes in another four pairs (diagnosis/relapse) of adult glioblastoma. Overall, in three of five paired tumor samples, we found that although the same oncogenes were amplified at diagnosis and relapse, they were amplified on different double minutes. Our results suggest that double minutes readily evolve, increasing tumor heterogeneity rapidly. Understanding patterns of double minute evolution can shed light on future therapeutic solutions to brain tumors carrying such variants.
Journal Article
Patient-derived models recapitulate heterogeneity of molecular signatures and drug response in pediatric high-grade glioma
by
Mercer, Kimberly S.
,
Dunphy, Paige S.
,
Twarog, Nathaniel
in
1-Phosphatidylinositol 3-kinase
,
13/106
,
38/39
2021
Pediatric high-grade glioma (pHGG) is a major contributor to cancer-related death in children. In vitro and in vivo disease models reflecting the intimate connection between developmental context and pathogenesis of pHGG are essential to advance understanding and identify therapeutic vulnerabilities. Here we report establishment of 21 patient-derived pHGG orthotopic xenograft (PDOX) models and eight matched cell lines from diverse groups of pHGG. These models recapitulate histopathology, DNA methylation signatures, mutations and gene expression patterns of the patient tumors from which they were derived, and include rare subgroups not well-represented by existing models. We deploy 16 new and existing cell lines for high-throughput screening (HTS). In vitro HTS results predict variable in vivo response to PI3K/mTOR and MEK pathway inhibitors. These unique new models and an online interactive data portal for exploration of associated detailed molecular characterization and HTS chemical sensitivity data provide a rich resource for pediatric brain tumor research.
Patient-derived xenografts provide a resource for basic and translational cancer research. Here, the authors generate multiple pediatric high-grade glioma xenografts, use omics technologies to show that they are representative of primary tumours and use them to assess therapeutic response.
Journal Article
Unique genetic and epigenetic mechanisms driving paediatric diffuse high-grade glioma
by
Baker, Suzanne J.
,
Jones, Chris
in
631/67/69
,
692/699/67/68
,
Activin Receptors, Type I - genetics
2014
Key Points
Diffuse high-grade gliomas (HGGs) carry a dismal prognosis in both children and adults; however, genome-wide molecular analyses have shown that the disease pathogenesis differs significantly between these age groups.
There are at least several distinct subgroups of paediatric diffuse HGG based on clinical features and recurrent mutations.
Diffuse intrinsic pontine gliomas (DIPGs) arise in the brainstem, occur almost exclusively in children and are incurable.
Aberrant epigenetic regulation has an important role in paediatric HGGs, with 'hotspot' K27M histone H3 mutations found in nearly 80% of DIPGs, and alternative G34R or G34V mutations found in paediatric HGGs of the cerebral hemispheres.
Recurrent mutations of the bone morphogenetic protein (BMP) receptor activin receptor type 1 (
ACVR1
; also known as
ALK2
) are restricted to the youngest patients with DIPG, highlighting crucial connections between development and gliomagenesis.
HGGs in children who are less than three years of age contain very few genomic abnormalities and recurrent gene fusions, and have a better outcome than HGGs in older children.
An improved understanding of the oncogenic mutations driving paediatric diffuse HGG has identified new potential therapeutic targets and shown that different strategies will be needed to combat this disease in children and adults.
There has recently been a flurry of publications on the molecular and genetic basis of diffuse high-grade glioma, a devastating paediatric tumour. In this Review, Jones and Baker integrate these findings to provide new insight into this disease. In particular, the unique selective pressures driving the paediatric disease along with their associated mutations, potential molecular mechanisms and how this information could be harnessed therapeutically, are discussed.
Diffuse high-grade gliomas (HGGs) of childhood are a devastating spectrum of disease with no effective cures. The two-year survival for paediatric HGG ranges from 30%, for tumours arising in the cerebral cortex, to less than 10% for diffuse intrinsic pontine gliomas (DIPGs), which arise in the brainstem. Recent genome-wide studies provided abundant evidence that unique selective pressures drive HGG in children compared to adults, identifying novel oncogenic mutations connecting tumorigenesis and chromatin regulation, as well as developmental signalling pathways. These new genetic findings give insights into disease pathogenesis and the challenges and opportunities for improving patient survival in these mostly incurable childhood brain tumours.
Journal Article
Comprehensive molecular characterization of pediatric radiation-induced high-grade glioma
2021
Radiation-induced high-grade gliomas (RIGs) are an incurable late complication of cranial radiation therapy. We performed DNA methylation profiling, RNA-seq, and DNA sequencing on 32 RIG tumors and an in vitro drug screen in two RIG cell lines. We report that based on DNA methylation, RIGs cluster primarily with the pediatric receptor tyrosine kinase I high-grade glioma subtype. Common copy-number alterations include Chromosome (Ch.) 1p loss/1q gain, and Ch. 13q and Ch. 14q loss; focal alterations include
PDGFRA
and
CDK4
gain and
CDKN2A
and
BCOR
loss. Transcriptomically, RIGs comprise a stem-like subgroup with lesser mutation burden and Ch. 1p loss and a pro-inflammatory subgroup with greater mutation burden and depleted DNA repair gene expression. Chromothripsis in several RIG samples is associated with extrachromosomal circular DNA-mediated amplification of
PDGFRA
and
CDK4
. Drug screening suggests microtubule inhibitors/stabilizers, DNA-damaging agents, MEK inhibition, and, in the inflammatory subgroup, proteasome inhibitors, as potentially effective therapies.
Radiation-induced high-grade gliomas (RIGs) are an incurable late complication of cranial radiation therapy. In the largest study to date, we report the results of DNA methylation profiling, RNA-Seq and genomic sequencing of 32 RIG tumors, and an in vitro drug screen in two RIG cell lines.
Journal Article
Deep multiomics profiling of brain tumors identifies signaling networks downstream of cancer driver genes
2019
High throughput omics approaches provide an unprecedented opportunity for dissecting molecular mechanisms in cancer biology. Here we present deep profiling of whole proteome, phosphoproteome and transcriptome in two high-grade glioma (HGG) mouse models driven by mutated RTK oncogenes,
PDGFRA
and
NTRK1
, analyzing 13,860 proteins and 30,431 phosphosites by mass spectrometry. Systems biology approaches identify numerous master regulators, including 41 kinases and 23 transcription factors. Pathway activity computation and mouse survival indicate the
NTRK1
mutation induces a higher activation of AKT downstream targets including MYC and JUN, drives a positive feedback loop to up-regulate multiple other RTKs, and confers higher oncogenic potency than the
PDGFRA
mutation. A mini-gRNA library CRISPR-Cas9 validation screening shows 56% of tested master regulators are important for the viability of
NTRK
-driven HGG cells, including TFs (Myc and Jun) and metabolic kinases (AMPK
a
1 and AMPK
a
2), confirming the validity of the multiomics integrative approaches, and providing novel tumor vulnerabilities.
Multi-omic profiling is a powerful approach to dissecting molecular mechanisms in disease. Here the authors generate whole proteome, phosphoproteome and transcriptome profiles from two mouse models of high-grade glioma driven by different oncogenes, and validate identified master regulators with a CRISPR screen.
Journal Article
Mouse models of human PIK3CA-related brain overgrowth have acutely treatable epilepsy
2015
Mutations in the catalytic subunit of phosphoinositide 3-kinase ( PIK3CA) and other PI3K-AKT pathway components have been associated with cancer and a wide spectrum of brain and body overgrowth. In the brain, the phenotypic spectrum of PIK3CA -related segmental overgrowth includes bilateral dysplastic megalencephaly, hemimegalencephaly and focal cortical dysplasia, the most common cause of intractable pediatric epilepsy. We generated mouse models expressing the most common activating Pik3ca mutations ( H1047R and E545K ) in developing neural progenitors. These accurately recapitulate all the key human pathological features including brain enlargement, cortical malformation, hydrocephalus and epilepsy, with phenotypic severity dependent on the mutant allele and its time of activation. Underlying mechanisms include increased proliferation, cell size and altered white matter. Notably, we demonstrate that acute 1 hr-suppression of PI3K signaling despite the ongoing presence of dysplasia has dramatic anti-epileptic benefit. Thus PI3K inhibitors offer a promising new avenue for effective anti-epileptic therapy for intractable pediatric epilepsy patients. An enzyme called PI3K is involved in a major signaling pathway that controls cell growth. Mutations in this pathway have devastating consequences. When such mutations happen in adults, they can lead to cancer. Mutations that occur in embryos can cause major developmental birth defects, including abnormally large brains. After birth, these developmental problems can cause intellectual disabilities, autism and epilepsy. Children with this kind of epilepsy often do not respond to currently available seizure medications. There are several outstanding questions that if answered could help efforts to develop treatments for children with brain growth disorders. Firstly, how do the developmental abnormalities happen? Do the abnormalities themselves cause epilepsy? And can drugs that target this pathway, and are already in clinical trials for cancer, control seizures? Now, Roy et al. have made mouse models of these human developmental brain disorders and used them to answer these questions. The mice were genetically engineered to have various mutations in the gene that encodes the catalytic subunit of the PI3K enzyme. The mutations were the same as those found in people with brain overgrowth disorders, and were activated only in the developing brain of the mice. These mutations caused enlarged brain size, fluid accumulation in the brain, brain malformations and epilepsy in developing mice – thus mimicking the human birth defects. The severity of these symptoms depended on the specific mutation and when the mutant genes were turned on during development. Next, Roy et al. studied these mice to see if the seizures could be treated using a drug, that has already been developed for brain cancer. This drug specifically targets and reduces the activity of PI3K. Adult mutant mice with brain malformations were treated for just one hour; this dramatically reduced their seizures. These experiments prove that seizures associated with this kind of brain overgrowth disorder are driven by ongoing abnormal PI3K activity and can be treated even when underlying brain abnormalities persist. Roy et al. suggest that drugs targeting PI3K might help treat seizures in children with these brain overgrowth disorders.
Journal Article
Capmatinib is an effective treatment for MET-fusion driven pediatric high-grade glioma and synergizes with radiotherapy
by
Budd, Kaitlin M.
,
Roach, Jordan T.
,
Twarog, Nathaniel
in
Anilides - pharmacology
,
Animals
,
Benzamides - pharmacology
2024
Background
Pediatric-type diffuse high-grade glioma (pHGG) is the most frequent malignant brain tumor in children and can be subclassified into multiple entities. Fusion genes activating the MET receptor tyrosine kinase often occur in infant-type hemispheric glioma (IHG) but also in other pHGG and are associated with devastating morbidity and mortality.
Methods
To identify new treatment options, we established and characterized two novel orthotopic mouse models harboring distinct MET fusions. These included an immunocompetent, murine allograft model and patient-derived orthotopic xenografts (PDOX) from a MET-fusion IHG patient who failed conventional therapy and targeted therapy with cabozantinib. With these models, we analyzed the efficacy and pharmacokinetic properties of three MET inhibitors, capmatinib, crizotinib and cabozantinib, alone or combined with radiotherapy.
Results
Capmatinib showed superior brain pharmacokinetic properties and greater
in vitro
and
in vivo
efficacy than cabozantinib or crizotinib in both models. The PDOX models recapitulated the poor efficacy of cabozantinib experienced by the patient. In contrast, capmatinib extended survival and induced long-term progression-free survival when combined with radiotherapy in two complementary mouse models. Capmatinib treatment increased radiation-induced DNA double-strand breaks and delayed their repair.
Conclusions
We comprehensively investigated the combination of MET inhibition and radiotherapy as a novel treatment option for MET-driven pHGG. Our seminal preclinical data package includes pharmacokinetic characterization, recapitulation of clinical outcomes, coinciding results from multiple complementing
in vivo
studies, and insights into molecular mechanism underlying increased efficacy. Taken together, we demonstrate the groundbreaking efficacy of capmatinib and radiation as a highly promising concept for future clinical trials.
Journal Article
CONSERTING: integrating copy-number analysis with structural-variation detection
2015
CONSERTING detects somatic copy-number alterations from whole-genome sequence data with high accuracy and sensitivity and identifies breakpoints even in heterogeneous or impure tumors.
We developed Copy Number Segmentation by Regression Tree in Next Generation Sequencing (CONSERTING), an algorithm for detecting somatic copy-number alteration (CNA) using whole-genome sequencing (WGS) data. CONSERTING performs iterative analysis of segmentation on the basis of changes in read depth and the detection of localized structural variations, with high accuracy and sensitivity. Analysis of 43 cancer genomes from both pediatric and adult patients revealed novel oncogenic CNAs, complex rearrangements and subclonal CNAs missed by alternative approaches.
Journal Article