Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
LanguageLanguage
-
SubjectSubject
-
Item TypeItem Type
-
DisciplineDiscipline
-
YearFrom:-To:
-
More FiltersMore FiltersIs Peer Reviewed
Done
Filters
Reset
72
result(s) for
"Balart, Rafael"
Sort by:
Tailoring the Properties of Thermo-Compressed Polylactide Films for Food Packaging Applications by Individual and Combined Additions of Lactic Acid Oligomer and Halloysite Nanotubes
by
Balart, Rafael
,
Quiles-Carrillo, Luis
,
Torres-Giner, Sergio
in
Edible Films
,
Food Packaging
,
HNTs
2020
In this work, films of polylactide (PLA) prepared by extrusion and thermo-compression were plasticized with oligomer of lactic acid (OLA) at contents of 5, 10, and 20 wt%. The PLA sample containing 20 wt% of OLA was also reinforced with 3, 6, and 9 parts per hundred resin (phr) of halloysite nanotubes (HNTs) to increase the mechanical strength and thermal stability of the films. Prior to melt mixing, ultrasound-assisted dispersion of the nanoclays in OLA was carried out at 100 °C to promote the HNTs dispersion in PLA and the resultant films were characterized with the aim to ascertain their potential in food packaging. It was observed that either the individual addition of OLA or combined with 3 phr of HNTs did not significantly affect the optical properties of the PLA films, whereas higher nanoclay contents reduced lightness and induced certain green and blue tonalities. The addition of 20 wt% of OLA increased ductility of the PLA film by nearly 75% and also decreased the glass transition temperature (Tg) by over 18 °C. The incorporation of 3 phr of HNTs into the OLA-containing PLA films delayed thermal degradation by 7 °C and additionally reduced the permeabilities to water and limonene vapors by approximately 8% and 47%, respectively. Interestingly, the highest barrier performance was attained for the unfilled PLA film plasticized with 10 wt% of OLA, which was attributed to a crystallinity increase and an effect of “antiplasticization”. However, loadings of 6 and 9 phr of HNTs resulted in the formation of small aggregates that impaired the performance of the blend films. The here-attained results demonstrates that the properties of ternary systems of PLA/OLA/HNTs can be tuned when the plasticizer and nanofiller contents are carefully chosen and the resultant nanocomposite films can be proposed as a bio-sourced alternative for compostable packaging applications.
Journal Article
Improvement of Poly(lactide) Ductile Properties by Plasticization with Biobased Tartaric Acid Ester
by
Gomez‐Caturla, Jaume
,
Ivorra‐Martinez, Juan
,
Moreno, Virginia
in
Biodegradability
,
biodegradable materials
,
Biodegradation
2023
Diethyl l‐tartrate (DET) is used as a biobased plasticizer for poly(lactide) (PLA) formulations with improved ductile properties without compromising biodegradation. Different weight percentages (wt.%) of DET in the 0–50 wt.% range are added to PLA by melt compounding and subsequently processed by injection molding. The effect of wt.% DET on mechanical, thermal, thermo‐mechanical, morphology, biodegradation, and crystallinity is studied. Addition of 20 wt.% DET leads to a noticeable increase in elongation at break up to values of 567%, which is quite an interesting result considering the extreme brittleness of PLA. These results are verified by field emission scanning electron microscopy (FESEM) images, where filament‐like structures are observed, indicative of an effective plasticization. Differential scanning calorimetry (DSC) and dynamic mechanical thermal analysis (DMTA) show that the glass transition temperature of PLA is drastically decreased down to values of 23 °C for the sample with the highest amount of DET (50 wt.%), thus increasing its ductility and processability. Fourier‐transformed infrared spectroscopy (FTIR) spectra show that there exists chemical interactions between PLA and DET. Finally, the biodegradability analysis proves that the developed blends are fully biodegradable, achieving complete disintegration after 49 days. It is observed that DET enhanced the disintegration rate of PLA. This work reports on the development of PLA blends with diethyl tartrate (DET) as a plasticizer, which greatly increases the ductility of PLA, an extremely fragile polymer. Achieving values superior to 550% elongation at break for a sample with 20 wt.% DET. Moreover, this plasticizer is naturally‐based and completely biodegradable, which makes the blend totally environmentally friendly.
Journal Article
Improvement of Impact Strength of Polylactide Blends with a Thermoplastic Elastomer Compatibilized with Biobased Maleinized Linseed Oil for Applications in Rigid Packaging
by
Ivorra-Martinez, Juan
,
Balart, Rafael
,
Quiles-Carrillo, Luis
in
Biocompatible Materials - chemistry
,
Biodegradation
,
Biopolymers
2021
This research work reports the potential of maleinized linseed oil (MLO) as biobased compatibilizer in polylactide (PLA) and a thermoplastic elastomer, namely, polystyrene-b-(ethylene-ran-butylene)-b-styrene (SEBS) blends (PLA/SEBS), with improved impact strength for the packaging industry. The effects of MLO are compared with a conventional polystyrene-b-poly(ethylene-ran-butylene)-b-polystyrene-graft-maleic anhydride terpolymer (SEBS-g-MA) since it is widely used in these blends. Uncompatibilized and compatibilized PLA/SEBS blends can be manufactured by extrusion and then shaped into standard samples for further characterization by mechanical, thermal, morphological, dynamical-mechanical, wetting and colour standard tests. The obtained results indicate that the uncompatibilized PLA/SEBS blend containing 20 wt.% SEBS gives improved toughness (4.8 kJ/m2) compared to neat PLA (1.3 kJ/m2). Nevertheless, the same blend compatibilized with MLO leads to an increase in impact strength up to 6.1 kJ/m2, thus giving evidence of the potential of MLO to compete with other petroleum-derived compatibilizers to obtain tough PLA formulations. MLO also provides increased ductile properties, since neat PLA is a brittle polymer with an elongation at break of 7.4%, while its blend with 20 wt.% SEBS and MLO as compatibilizer offers an elongation at break of 50.2%, much higher than that provided by typical SEBS-g-MA compatibilizer (10.1%). MLO provides a slight decrease (about 3 °C lower) in the glass transition temperature (Tg) of the PLA-rich phase, thus showing some plasticization effects. Although MLO addition leads to some yellowing due to its intrinsic yellow colour, this can contribute to serving as a UV light barrier with interesting applications in the packaging industry. Therefore, MLO represents a cost-effective and sustainable solution to the use of conventional petroleum-derived compatibilizers.
Journal Article
Bio-Polyethylene-Based Composites Reinforced with Alkali and Palmitoyl Chloride-Treated Coffee Silverskin
2019
This work investigates the feasibility of using coffee silverskin (CSS) as a reinforcing agent in biobased polyethylene (BioPE) composites, by adding it in bulk and thin film samples. The effect of two different treatments, alkali bleaching (CSS_A) and esterification with palmitoyl chloride (CSS_P), on mechanical, thermal, morphological and water absorption behavior of produced materials at different CSS loading (10, 20 and 30 wt %) was investigated. A reactive graft copolymerization of BioPE with maleic anhydride was considered in the case of alkali treated CSS. It was found that, when introduced in bulk samples, improvement in the elastic modulus and a reduction in strain at maximum stress were observed with the increase in CSS fraction for the untreated and treated CSS composites, while the low aspect ratio of the CSS particles and their poor adhesion with the polymeric matrix were responsible for reduced ductility in films, decreasing crystallinity values and reduction of elastic moduli. When CSS_A and CSS_P are introduced in the matrix, a substantial reduction in the water uptake is also obtained in films, mainly due to presence of maleated PE, that builds up some interactions to eliminate the amounts of OH groups and hydrophobized CSS, due to the weakened absorption capacity of the functionalized CSS.
Journal Article
Development of biodegradable PLA composites and tangerine peel flour with improved toughness containing a natural-based terpenoid
by
Montanes, Nestor
,
Puglia, Debora
,
Balart, Rafael
in
biodegradable polymers
,
Composite materials
,
Contact angle
2023
The present work reports on the development of environmentally friendly, completely biodegradable wood plastic composites based on polylactide (PLA) and tangerine peel flour (TPF), plasticized by α-terpinyl acetate (TA). The TPF varied in the 10-30 wt% while the PLA to TA (wt%/wt%) was set to 4 (i. e., 25 wt% TA plasticizer was added with regard to the PLA wt%). The developed composites were processed by extrusion and injection molding. The composites presented excellent elongation at break, achieving values of 300% for the PLA+TA sample. Elongation at break values of 200% for the PLA composite with 10 wt% TPF and plasticized with TA were obtained. Those results were confirmed by the appearance of filament-like structures observed in field emission scanning electron microscopy images. Differential scanning calorimetry and dynamic mechanical thermal analysis revealed a remarkable decrease in the glass transition temperature of PLA as a result of the plasticizing effect of TA. Glass transition was reduced from 63 °C down to 41°C approximately. This implied an increase in the ductility of the material. The samples with TPF exhibited a dark brown color, making them perfect for wood plastic composite applications. Water contact angle results show that TA and TPF change the wetting properties of the obtained composites. A general decrease in the water contact angle was observed with the addition of TPF and TA. Finally, disintegration tests proved that the developed composites are fully biodegradable. All the samples except for neat PLA achieved 100% disintegration in controlled compost soil conditions after 5 weeks, while neat PLA reached complete disintegration in 6 weeks.
Journal Article
Manufacturing and characterization of highly environmentally-friendly composites with polylactide matrix and mango kernel seed flour
by
Lascano, Diego
,
Montanes, Nestor
,
Puglia, Debora
in
Absorbance
,
Agroforestry
,
Biodegradability
2023
This work reports on the development of polylactide (PLA)/mango kernel seed flour (MKSF) composites combined with tributyrin (TBN) and triacetin (TCN) as plasticizers. Thus, wood plastic composites (WPC) are obtained by extrusion and injection-molding processes. The solubility, mechanical, morphological, thermal, colorimetric, water absorbance, flowability, and disintegrability properties are evaluated. The ductility of the PLA+MKSF composite is improved by the plasticizing effect of TBN and TCN (10 phr (parts per hundred resin) each). Elongation at break is increased from 4.4 up to 9.5 and 8.3%, respectively. The theoretical solubility analysis supports the good miscibility between PLA with TBN and TCN (relative energy difference (RED) values of 0.86 and 0.73, respectively) deduced from the mechanical performance. Field emission scanning electron microscopy (FESEM) images also corroborate the mechanical findings, where a decrease in the presence of voids in the PLA matrix suggests certain compatibility between MKSF and TBN, and TCN. Differential scanning calorimetry (DSC) and dynamic-mechanical-thermal analysis (DMTA) results show that the plasticizers decrease the glass transition temperature and the melting temperature of PLA, thus improving its ductility. Thermogravimetric analysis (TGA) results indicate that the thermal stability of the composite is slightly decreased due to the relatively high volatility of the plasticizers, while MKSF does not affect this matter. The composites exhibit excellent biodegradability, presenting more than 90% of disintegration in compost soil conditions in 12 weeks. Finally, MKSF provided the composites with a wood-like dark brown color and with high water absorbance.
Journal Article
On the Use of Phenolic Compounds Present in Citrus Fruits and Grapes as Natural Antioxidants for Thermo-Compressed Bio-Based High-Density Polyethylene Films
by
Balart, Rafael
,
Torres-Giner, Sergio
,
Quiles-Carrillo, Luis
in
Acids
,
active food packaging
,
Agricultural wastes
2020
This study originally explores the use of naringin (NAR), gallic acid (GA), caffeic acid (CA), and quercetin (QUER) as natural antioxidants for bio-based high-density polyethylene (bio-HDPE). These phenolic compounds are present in various citrus fruits and grapes and can remain in their leaves, peels, pulp, and seeds as by-products or wastes after juice processing. Each natural additive was first melt-mixed at 0.8 parts per hundred resin (phr) of bio-HDPE by extrusion and the resultant pellets were shaped into films by thermo-compression. Although all the phenolic compounds colored the bio-HDPE films, their contact transparency was still preserved. The chemical analyses confirmed the successful inclusion of the phenolic compounds in bio-HDPE, though their interaction with the green polyolefin matrix was low. The mechanical performance of the bio-HDPE films was nearly unaffected by the natural compounds, presenting in all cases a ductile behavior. Interestingly, the phenolic compounds successfully increased the thermo-oxidative stability of bio-HDPE, yielding GA and QUER the highest performance. In particular, using these phenolic compounds, the onset oxidation temperature (OOT) value was improved by 43 and 41.5 °C, respectively. Similarly, the oxidation induction time (OIT) value, determined in isothermal conditions at 210 °C, increased from 4.5 min to approximately 109 and 138 min. Furthermore, the onset degradation temperature in air of bio-HDPE, measured for the 5% of mass loss (T5%), was improved by up to 21 °C after the addition of NAR. Moreover, the GA- and CA-containing bio-HDPE films showed a high antioxidant activity in alcoholic solution due to their favored release capacity, which opens up novel opportunities in active food packaging. The improved antioxidant performance of these phenolic compounds was ascribed to the multiple presence of hydroxyl groups and aromatic heterocyclic rings that provide these molecules with the features to permit the delocalization and the scavenging of free radicals. Therefore, the here-tested phenolic compounds, in particular QUER, can represent a sustainable and cost-effective alternative of synthetic antioxidants in polymer and biopolymer formulations, for which safety and environmental issues have been raised over time.
Journal Article
Bioactive Multilayer Polylactide Films with Controlled Release Capacity of Gallic Acid Accomplished by Incorporating Electrospun Nanostructured Coatings and Interlayers
by
Balart, Rafael
,
Quiles-Carrillo, Luis
,
Torres-Giner, Sergio
in
Acids
,
Antioxidants
,
bioactive packaging
2019
The present research reports on the development of bi- and multilayer polylactide (PLA) films by the incorporation of electrospun nanostructured PLA coatings and interlayers containing the antioxidant gallic acid (GA) at 40 wt% onto cast-extruded PLA films. To achieve the bilayer structures, submicron GA-loaded PLA fibers were applied on 200-µm cast PLA films in the form of coatings by electrospinning for 1, 2, and 3 h. For the multilayers, the cast PLA films were first coated on one side by electrospinning, then sandwiched with 10-µm PLA film on the other side, and the resultant whole structure was finally thermally post-treated at 150 °C without pressure. Whereas the bilayer PLA films easily delaminated and lacked transparency, the multilayers showed sufficient adhesion between layers and high transparency for deposition times during electrospinning of up to 2 h. The incorporation of GA positively contributed to delaying the thermal degradation of PLA for approximately 10 °C, as all films were thermally stable up to 345 °C. The in vitro release studies performed in saline medium indicated that the GA released from the bilayer PLA films rapidly increased during the first 5 h of immersion while it stabilized after 45–250 h. Interestingly, the PLA multilayers offered a high sustained release of GA, having the capacity to deliver the bioactive for over 1000 h. In addition, in the whole tested period, the GA released from the PLA films retained most of its antioxidant functionality. Thus, during the first days, the bilayer PLA films can perform as potent vehicles to deliver GA while the multilayer PLA films are able to show a sustained release of the natural antioxidant for extended periods.
Journal Article
Plasticization of poly(3-hydroxybutyrate) with biobased terpenoid esters of geraniol
by
Arrieta, Marina Patricia
,
Valencia, Yago
,
Ivorra-Martinez, Juan
in
Bacteria
,
biodegradable polymers
,
Carboxylic acids
2023
Poly(3-hydroxybutyrate) (P3HB) is, by far, one of the most promising bacterial polyesters at the commercial scale, but it is a brittle polymer due to physical aging occurring at room temperature, which promotes secondary crystallization. Plasticization is a cost-effective and technical approach to overcome or minimize, this drawback. In this work, the use of terpenoid-based organic compounds as plasticizers for P3HB is proposed. Geranyl esters with different chain length carboxylic acids, namely acetic (C2), propionic (C3), butyric (C4), and isovaleric (C5) acids, are used at a constant proportion with the main aim of improving the ductility of P3HB. In addition, thermal properties, morphology, and disintegration are also addressed. All geraniol-based plasticizers provided increased ductility. The elongation at break of neat P3HB (7.4%) increased up to 9.7%, which represents a percentage increase of 31.1%. A remarkable increase in toughness is also obtained by a change in the impact strength from 2.2 kJ.m-2 (neat P3HB) up to 3.4 kJ.m-2 with geranyl acetate. Thus, the proposed P3HB formulations widen the potential uses of P3HB since its ductile properties are improved. Other relevant results are related to the glass transition temperature reduction and an increase in the disintegration rate in controlled compost soil.
Journal Article
A combination of three surface modifiers for the optimal generation and application of natural hybrid nanopigments in a biodegradable resin
2017
Our purpose was to improve the thermal, mechanical and optimal properties of an epoxy bioresin using optimum hybrid natural pigments previously synthesised in our lab. Next, we searched for the best combinations of factors in the synthesis of natural hybrid nanopigments and then incorporated them into the bioresin. We combined three structural modifiers in the nanopigment synthesis, surfactant, coupling agent (silane) and a mordant salt (alum), selected to replicate mordant textile dyeing with natural dyes. We used Taguchi’s design L8 to seek final performance optimisation. We selected three natural dyes, chlorophyll, beta-carotene and beetroot extract, and used two laminar nanoclay types, montmorillonite and hydrotalcite. The thermal, mechanical and colorimetric characterisation of the composite obtained by mixing natural hybrid nanopigments (bionanocomposite) was made. The natural dye interactions with both nanoclays improved the thermal stabilities, colour performance and UV–VIS light exposure stability of natural dyes and bioresins. The best bionanocomposite materials were found in an acidic pH [
3
,
4
] environment and by modifying nanoclays with mordant and surfactant during the nanopigment synthesis process.
Journal Article