Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
30
result(s) for
"Baldauf, Hanna-Mari"
Sort by:
New strategies to treat AML: novel insights into AML survival pathways and combination therapies
by
Baldauf, Hanna-Mari
,
Nair, Ramya
,
Salinas-Illarena, Alejandro
in
631/67/1059
,
631/80/86
,
Acute myeloid leukemia
2021
The effective treatment of acute myeloid leukemia (AML) is very challenging. Due to the immense heterogeneity of this disease, treating it using a “one size fits all” approach is ineffective and only benefits a subset of patients. Instead, there is a shift towards more personalized treatment based on the patients’ genomic signature. This shift has facilitated the increased revelation of novel insights into pathways that lead to the survival and propagation of AML cells. These AML survival pathways are involved in drug resistance, evasion of the immune system, reprogramming metabolism, and impairing differentiation. In addition, based on the reports of enhanced clinical efficiencies when combining drugs or treatments, deeper investigation into possible pathways, which can be targeted together to increase treatment response in a wider group of patients, is warranted. In this review, not only is a comprehensive summary of targets involved in these pathways provided, but also insights into the potential of targeting these molecules in combination therapy will be discussed.
Journal Article
Impaired detection of omicron by SARS-CoV-2 rapid antigen tests
by
Muenchhoff Maximilian
,
Hanna-Mari, Baldauf
,
Basara Elif
in
Antigens
,
Cell culture
,
Clinical isolates
2022
Since autumn 2020, rapid antigen tests (RATs) have been implemented in several countries as an important pillar of the national testing strategy to rapidly screen for infections on site during the SARS-CoV-2 pandemic. The current surge in infection rates around the globe is driven by the variant of concern (VoC) omicron (B.1.1.529). Here, we evaluated the performance of nine SARS-CoV-2 RATs in a single-centre laboratory study. We examined a total of 115 SARS-CoV-2 PCR-negative and 166 SARS-CoV-2 PCR-positive respiratory swab samples (101 omicron, 65 delta (B.1.617.2)) collected from October 2021 until January 2022 as well as cell culture-expanded clinical isolates of both VoCs. In an assessment of the analytical sensitivity in clinical specimen, the 50% limit of detection (LoD50) ranged from 1.77 × 106 to 7.03 × 107 RNA copies subjected to the RAT for omicron compared to 1.32 × 105 to 2.05 × 106 for delta. To score positive in these point-of-care tests, up to 10-fold (LoD50) or 101-fold (LoD95) higher virus loads were required for omicron- compared to delta-containing samples. The rates of true positive test results for omicron samples in the highest virus load category (Ct values < 25) ranged between 31.4 and 77.8%, while they dropped to 0–8.3% for samples with intermediate Ct values (25–30). Of note, testing of expanded virus stocks suggested a comparable RAT sensitivity of both VoCs, questioning the predictive value of this type of in vitro-studies for clinical performance. Given their importance for national test strategies in the current omicron wave, awareness must be increased for the reduced detection rate of omicron infections by RATs and a short list of suitable RATs that fulfill the minimal requirements of performance should be rapidly disclosed.
Journal Article
Comparison of four commercial, automated antigen tests to detect SARS-CoV-2 variants of concern
by
Blum, Helmut
,
Späth, Patricia
,
Kaderali, Lars
in
Amino acids
,
Antigens
,
Antigens, Viral - analysis
2021
A versatile portfolio of diagnostic tests is essential for the containment of the severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2) pandemic. Besides nucleic acid-based test systems and point-of-care (POCT) antigen (Ag) tests, quantitative, laboratory-based nucleocapsid Ag tests for SARS-CoV-2 have recently been launched. Here, we evaluated four commercial Ag tests on automated platforms and one POCT to detect SARS-CoV-2. We evaluated PCR-positive (
n
= 107) and PCR-negative (
n
= 303) respiratory swabs from asymptomatic and symptomatic patients at the end of the second pandemic wave in Germany (February–March 2021) as well as clinical isolates EU1 (B.1.117), variant of concern (VOC) Alpha (B.1.1.7) or Beta (B.1.351), which had been expanded in a biosafety level 3 laboratory. The specificities of automated SARS-CoV-2 Ag tests ranged between 97.0 and 99.7% (Lumipulse G SARS-CoV-2 Ag (Fujirebio): 97.03%, Elecsys SARS-CoV-2 Ag (Roche Diagnostics): 97.69%; LIAISON
®
SARS-CoV-2 Ag (Diasorin) and SARS-CoV-2 Ag ELISA (Euroimmun): 99.67%). In this study cohort of hospitalized patients, the clinical sensitivities of tests were low, ranging from 17.76 to 52.34%, and analytical sensitivities ranged from 420,000 to 25,000,000 Geq/ml. In comparison, the detection limit of the Roche Rapid Ag Test (RAT) was 9,300,000 Geq/ml, detecting 23.58% of respiratory samples. Receiver-operating-characteristics (ROCs) and Youden’s index analyses were performed to further characterize the assays’ overall performance and determine optimal assay cutoffs for sensitivity and specificity. VOCs carrying up to four amino acid mutations in nucleocapsid were detected by all five assays with characteristics comparable to non-VOCs. In summary, automated, quantitative SARS-CoV-2 Ag tests show variable performance and are not necessarily superior to a standard POCT. The efficacy of any alternative testing strategies to complement nucleic acid-based assays must be carefully evaluated by independent laboratories prior to widespread implementation.
Journal Article
Evaluation of two rapid antigen tests to detect SARS-CoV-2 in a hospital setting
2021
Successful containment strategies for the SARS-CoV-2 pandemic will depend on reliable diagnostic assays. Point-of-care antigen tests (POCT) may provide an alternative to time-consuming PCR tests to rapidly screen for acute infections on site. Here, we evaluated two SARS-CoV-2 antigen tests: the STANDARD™ F COVID-19 Ag FIA (FIA) and the SARS-CoV-2 Rapid Antigen Test (RAT). For diagnostic assessment, we used a large set of PCR-positive and PCR-negative respiratory swabs from asymptomatic and symptomatic patients and health care workers in the setting of two University Hospitals in Munich, Germany, i.e. emergency rooms, patient care units or employee test centers. For FIA, overall clinical sensitivity and specificity were 45.4% (
n
= 381) and 97.8% (
n
= 360), respectively, and for RAT, 50.3% (
n
= 445) and 97.7% (
n
= 386), respectively. For primary diagnosis of asymptomatic and symptomatic individuals, diagnostic sensitivities were 60.9% (FIA) (
n
= 189) and 64.5% (RAT) (
n
= 256). This questions these tests’ utility for the reliable detection of acute SARS-CoV-2-infected individuals, in particular in high-risk settings. We support the proposal that convincing high-quality outcome data on the impact of false-negative and false-positive antigen test results need to be obtained in a POCT setting. Moreover, the efficacy of alternative testing strategies to complement PCR assays must be evaluated by independent laboratories, prior to widespread implementation in national and international test strategies.
Journal Article
Restrictions to HIV-1 replication in resting CD4+T lymphocytes
by
Xiaoyu Pan Hanna-Mari Baldauf Oliver T Keppler Oliver T Fackler
in
631/250/1619/554/1898
,
631/250/249/1570/1901
,
631/250/262
2013
CD4+ T lymphocytes represent the main target cell population of human immunodeficiency virus (HIV). In an activated state, CD4+ T cells residing in lymphoid organs are a major reservoir of ongoing HIV-1 replication in in- fected individuals. In contrast, resting CD4+ T cells are highly resistant to productive HIV-1 infection, yet are mas- sively depleted during disease progression and represent a substantial latent reservoir for the virus in vivo. Barriers preventing replication of HIV-1 in resting CD4+ T cells include a rigid layer of cortical actin and, early after HIV-1 entry, a block that limits reverse transcription of incoming viral RNA genomes. Defining the molecular bases of these restrictions has remained one of the central open questions in HIV research. Recent advances unraveled mechanisms by which HIV-1 bypasses the entry block and established the host cell restriction factor SAMHDI, a deoxynucleoside tripbosphate triphosphohydrolase, as a central determinant of the cellular restriction to HIV-1 reverse transcription in resting CD4+ T cells. This review summarizes our current molecular and pathophysiological understanding of the mnlti-faceted interactions of HIV-1 with resting CD4+ T lymphocytes.
Journal Article
SAMHD1 is a biomarker for cytarabine response and a therapeutic target in acute myeloid leukemia
by
Berdel, Wolfgang E
,
Geisslinger, Gerd
,
Schwarz, Sarah-Marie
in
631/45/607/1164
,
631/67/1059/2326
,
692/308/53/2422
2017
The therapeutic response of acute myeloid leukemia to the nucleoside analog Ara-C is controlled by SAMHD1, an enzyme that hydrolyzes the active metabolite Ara-CTP.
The nucleoside analog cytarabine (Ara-C) is an essential component of primary and salvage chemotherapy regimens for acute myeloid leukemia (AML). After cellular uptake, Ara-C is converted into its therapeutically active triphosphate metabolite, Ara-CTP, which exerts antileukemic effects, primarily by inhibiting DNA synthesis in proliferating cells
1
. Currently, a substantial fraction of patients with AML fail to respond effectively to Ara-C therapy, and reliable biomarkers for predicting the therapeutic response to Ara-C are lacking
2
,
3
. SAMHD1 is a deoxynucleoside triphosphate (dNTP) triphosphohydrolase that cleaves physiological dNTPs into deoxyribonucleosides and inorganic triphosphate
4
,
5
. Although it has been postulated that SAMHD1 sensitizes cancer cells to nucleoside-analog derivatives through the depletion of competing dNTPs
6
, we show here that SAMHD1 reduces Ara-C cytotoxicity in AML cells. Mechanistically, dGTP-activated SAMHD1 hydrolyzes Ara-CTP, which results in a drastic reduction of Ara-CTP in leukemic cells. Loss of SAMHD1 activity—through genetic depletion, mutational inactivation of its triphosphohydrolase activity or proteasomal degradation using specialized, virus-like particles
7
,
8
—potentiates the cytotoxicity of Ara-C in AML cells. In mouse models of retroviral AML transplantation, as well as in retrospective analyses of adult patients with AML, the response to Ara-C-containing therapy was inversely correlated with SAMHD1 expression. These results identify SAMHD1 as a potential biomarker for the stratification of patients with AML who might best respond to Ara-C-based therapy and as a target for treating Ara-C-refractory AML.
Journal Article
The wide utility of rabbits as models of human diseases
by
Ruvoën-Clouet, Natalie
,
Chen, Yuxing
,
Christensen, Neil
in
631/208
,
631/208/1516
,
Acquired immune deficiency syndrome
2018
Studies using the European rabbit
Oryctolagus cuniculus
contributed to elucidating numerous fundamental aspects of antibody structure and diversification mechanisms and continue to be valuable for the development and testing of therapeutic humanized polyclonal and monoclonal antibodies. Additionally, during the last two decades, the use of the European rabbit as an animal model has been increasingly extended to many human diseases. This review documents the continuing wide utility of the rabbit as a reliable disease model for development of therapeutics and vaccines and studies of the cellular and molecular mechanisms underlying many human diseases. Examples include syphilis, tuberculosis, HIV-AIDS, acute hepatic failure and diseases caused by noroviruses, ocular herpes, and papillomaviruses. The use of rabbits for vaccine development studies, which began with Louis Pasteur’s rabies vaccine in 1881, continues today with targets that include the potentially blinding HSV-1 virus infection and HIV-AIDS. Additionally, two highly fatal viral diseases, rabbit hemorrhagic disease and myxomatosis, affect the European rabbit and provide unique models to understand co-evolution between a vertebrate host and viral pathogens.
Infectious disease: A leap forward for disease models
Rabbits offer a powerful complement to rodents as a model for studying human immunology, disease pathology, and responses to infectious disease. A review from Pedro Esteves at the University of Porto, Portugal, Rose Mage of the National Institute of Allergy and Infectious Disease, Bethesda, USA and colleagues highlights some of the areas of research where rabbits offer an edge over rats and mice. Rabbits have a particularly sophisticated adaptive immune system, which could provide useful insights into human biology and produce valuable research and clinical reagents. They are also excellent models for studying - infectious diseases such as syphilis and tuberculosis, which produce pathology that closely resembles that of human patients. Rabbit-specific infections such as myxomatosis are giving researchers insights into how pathogens and hosts can shape each other’s evolution.
Journal Article
Deciphering the origins of guanylate-binding proteins in mammals (Monotreme, Marsupials and Placentals)
by
Morrissey, Kimberly A.
,
Marques, João Pedro
,
Miller, Robert D.
in
Amino acids
,
Analysis
,
Animals
2025
Background
Guanylate-binding proteins (GBPs) belong to the large guanosine triphosphatases (GTPases) family and have specialised in host defence in vivo against a broad spectrum of invading pathogens. This ancient evolutionary group of genes was first studied in humans and rodents, but its evolution remained largely unknown for nearly 20 years. In recent years, more studies have emerged deepening the knowledge of
GBP
evolution in specific mammalian groups: Primates,
Tupaia
, Muroids (Rodents), Bats and Lagomorphs.
Results
Here, we aimed to present a comprehensive analysis of mammals GBP evolution. Our phylogenetic analysis demonstrates that mammals’ GBPs share a common ancestor and that each major mammalian group has evolved a specific GBP repertoire. Two Monotreme GBP groups,
GBP8
and
GBP9
, cluster independently in the phylogenetic tree and do not share the synteny of the other mammalian GBP genes. The other two Monotreme GBP groups,
GBP1/2/3/5
and
GBP4/6/7
, are at the basal position of the main mammalian groups. Marsupials have two GBP groups,
Marsupial GBP1/2/3/5
, basal to
Placental GBP1/2/3/5
, and
Marsupial GBP4/6/7
, basal to
Placental GBP4/6/7
.
Marsupial GBP1/2/3/5
can be subdivided into three sub-groups, similarly to what is observed in the Placental GBPs, whereas
Marsupial GBP4/6/7
underwent several duplication events across species. We also examined the GBP tissue expression pattern in
Monodelphis domestica
and found that GBPs are ubiquitously expressed in most tissues, with some differences. Noteworthy was the presence of GBP transcripts in late foetal and newborn opossum tissues.
Conclusions
The GBP genes revealed a distinct evolutionary pattern in each main mammalian group. Phylogenetic analysis shows that Monotremes and Marsupials have specific GBPs. Particularly intriguing is the presence of
GBP8
and
GBP9
only in Monotremes.
Journal Article
Variable detection of Omicron-BA.1 and -BA.2 by SARS-CoV-2 rapid antigen tests
by
Czibere, Ludwig
,
Blum, Helmut
,
Kaderali, Lars
in
Antigens
,
COVID-19
,
Severe acute respiratory syndrome coronavirus 2
2023
During 2022, the COVID-19 pandemic has been dominated by the variant of concern (VoC) Omicron (B.1.1.529) and its rapidly emerging subvariants, including Omicron-BA.1 and -BA.2. Rapid antigen tests (RATs) are part of national testing strategies to identify SARS-CoV-2 infections on site in a community setting or to support layman’s diagnostics at home. We and others have recently demonstrated an impaired RAT detection of infections caused by Omicron-BA.1 compared to Delta. Here, we evaluated the performance of five SARS-CoV-2 RATs in a single-centre laboratory study examining a total of 140 SARS-CoV-2 PCR-positive respiratory swab samples, 70 Omicron-BA.1 and 70 Omicron-BA.2, as well as 52 SARS-CoV-2 PCR-negative swabs collected from March 8th until April 10th, 2022. One test did not meet minimal criteria for specificity. In an assessment of the analytical sensitivity in clinical specimen, the 50% limit of detection (LoD50) ranged from 4.2 × 104 to 9.2 × 105 RNA copies subjected to the RAT for Omicron-BA.1 compared to 1.3 × 105 to 1.5 × 106 for Omicron-BA.2. Overall, intra-assay differences for the detection of Omicron-BA.1-containing and Omicron-BA.2-containing samples were non-significant, while a marked overall heterogeneity among the five RATs was observed. To score positive in these point-of-care tests, up to 22-fold (LoD50) or 68-fold (LoD95) higher viral loads were required for the worst performing compared to the best performing RAT. The rates of true-positive test results for these Omicron subvariant-containing samples in the highest viral load category (Ct values < 25) ranged between 44.7 and 91.1%, while they dropped to 8.7 to 22.7% for samples with intermediate Ct values (25–30). In light of recent reports on the emergence of two novel Omicron-BA.2 subvariants, Omicron-BA.2.75 and BJ.1, awareness must be increased for the overall reduced detection rate and marked differences in RAT performance for these Omicron subvariants.
Journal Article
Automated antigen assays display a high heterogeneity for the detection of SARS-CoV-2 variants of concern, including several Omicron sublineages
2023
Diagnostic tests for direct pathogen detection have been instrumental to contain the severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2) pandemic. Automated, quantitative, laboratory-based nucleocapsid antigen (Ag) tests for SARS-CoV-2 have been launched alongside nucleic acid-based test systems and point-of-care (POC) lateral-flow Ag tests. Here, we evaluated four commercial Ag tests on automated platforms for the detection of different sublineages of the SARS-CoV-2 Omicron variant of concern (VoC) (B.1.1.529) in comparison with “non-Omicron” VoCs. A total of 203 Omicron PCR-positive respiratory swabs (53 BA.1, 48 BA.2, 23 BQ.1, 39 XBB.1.5 and 40 other subvariants) from the period February to March 2022 and from March 2023 were examined. In addition, tissue culture-expanded clinical isolates of Delta (B.1.617.2), Omicron-BA.1, -BF.7, -BN.1 and -BQ.1 were studied. These results were compared to previously reported data from 107 clinical “non-Omicron” samples from the end of the second pandemic wave (February to March 2021) as well as cell culture-derived samples of wildtype (wt) EU-1 (B.1.177), Alpha VoC (B.1.1.7) and Beta VoC (B.1.351)). All four commercial Ag tests were able to detect at least 90.9% of Omicron-containing samples with high viral loads (Ct < 25). The rates of true-positive test results for BA.1/BA.2-positive samples with intermediate viral loads (Ct 25–30) ranged between 6.7% and 100.0%, while they dropped to 0 to 15.4% for samples with low Ct values (> 30). This heterogeneity was reflected also by the tests’ 50%-limit of detection (LoD50) values ranging from 44,444 to 1,866,900 Geq/ml. Respiratory samples containing Omicron-BQ.1/XBB.1.5 or other Omicron subvariants that emerged in 2023 were detected with enormous heterogeneity (0 to 100%) for the intermediate and low viral load ranges with LoD50 values between 23,019 and 1,152,048 Geq/ml. In contrast, detection of “non-Omicron” samples was more sensitive, scoring positive in 35 to 100% for the intermediate and 1.3 to 32.9% of cases for the low viral loads, respectively, corresponding to LoD50 values ranging from 6181 to 749,792 Geq/ml. All four assays detected cell culture-expanded VoCs Alpha, Beta, Delta and Omicron subvariants carrying up to six amino acid mutations in the nucleocapsid protein with sensitivities comparable to the non-VoC EU-1. Overall, automated quantitative SARS-CoV-2 Ag assays are not more sensitive than standard rapid antigen tests used in POC settings and show a high heterogeneity in performance for VoC recognition. The best of these automated Ag tests may have the potential to complement nucleic acid-based assays for SARS-CoV-2 diagnostics in settings not primarily focused on the protection of vulnerable groups. In light of the constant emergence of new Omicron subvariants and recombinants, most recently the XBB lineage, these tests’ performance must be regularly re-evaluated, especially when new VoCs carry mutations in the nucleocapsid protein or immunological and clinical parameters change.
Journal Article