Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
30 result(s) for "Baldwin, Jon K."
Sort by:
Room-temperature single-photon generation from solitary dopants of carbon nanotubes
The incorporation of carbon nanotubes in a silica matrix produces oxygen dopant states that can emit single photons at room temperature and at wavelengths relevant for applications in telecommunications. On-demand single-photon sources capable of operating at room temperature and the telecom wavelength range of 1,300–1,500 nm hold the key to the realization of novel technologies that span from sub-diffraction imaging to quantum key distribution and photonic quantum information processing 1 , 2 , 3 . Here, we show that incorporation of undoped (6,5) single-walled carbon nanotubes into a SiO 2 matrix can lead to the creation of solitary oxygen dopant states capable of fluctuation-free, room-temperature single-photon emission in the 1,100–1,300 nm wavelength range. We investigated the effects of temperature on photoluminescence emission efficiencies, fluctuations and decay dynamics of the dopant states and determined the conditions most suitable for the observation of single-photon emission. This emission can in principle be extended to 1,500 nm by doping of smaller-bandgap single-walled carbon nanotubes 4 , 5 . This easy tunability presents a distinct advantage over existing defect centre single-photon emitters (for example, diamond defect centres) 1 , 2 , 3 , 6 . Our SiO 2 -encapsulated sample also presents exciting opportunities to apply Si/SiO 2 -based micro/nano-device fabrication techniques in the development of electrically driven single-photon sources and integration of these sources into quantum photonic devices and networks.
Achieving Radiation Tolerance through Non-Equilibrium Grain Boundary Structures
Many methods used to produce nanocrystalline (NC) materials leave behind non-equilibrium grain boundaries (GBs) containing excess free volume and higher energy than their equilibrium counterparts with identical 5 degrees of freedom. Since non-equilibrium GBs have increased amounts of both strain and free volume, these boundaries may act as more efficient sinks for the excess interstitials and vacancies produced in a material under irradiation as compared to equilibrium GBs. The relative sink strengths of equilibrium and non-equilibrium GBs were explored by comparing the behavior of annealed (equilibrium) and as-deposited (non-equilibrium) NC iron films on irradiation. These results were coupled with atomistic simulations to better reveal the underlying processes occurring on timescales too short to capture using in situ TEM. After irradiation, NC iron with non-equilibrium GBs contains both a smaller number density of defect clusters and a smaller average defect cluster size. Simulations showed that excess free volume contribute to a decreased survival rate of point defects in cascades occurring adjacent to the GB and that these boundaries undergo less dramatic changes in structure upon irradiation. These results suggest that non-equilibrium GBs act as more efficient sinks for defects and could be utilized to create more radiation tolerant materials in future.
Light-driven nanoscale vectorial currents
Controlled charge flows are fundamental to many areas of science and technology, serving as carriers of energy and information, as probes of material properties and dynamics 1 and as a means of revealing 2 , 3 or even inducing 4 , 5 broken symmetries. Emerging methods for light-based current control 5 – 16 offer particularly promising routes beyond the speed and adaptability limitations of conventional voltage-driven systems. However, optical generation and manipulation of currents at nanometre spatial scales remains a basic challenge and a crucial step towards scalable optoelectronic systems for microelectronics and information science. Here we introduce vectorial optoelectronic metasurfaces in which ultrafast light pulses induce local directional charge flows around symmetry-broken plasmonic nanostructures, with tunable responses and arbitrary patterning down to subdiffractive nanometre scales. Local symmetries and vectorial currents are revealed by polarization-dependent and wavelength-sensitive electrical readout and terahertz (THz) emission, whereas spatially tailored global currents are demonstrated in the direct generation of elusive broadband THz vector beams 17 . We show that, in graphene, a detailed interplay between electrodynamic, thermodynamic and hydrodynamic degrees of freedom gives rise to rapidly evolving nanoscale driving forces and charge flows under the extremely spatially and temporally localized excitation. These results set the stage for versatile patterning and optical control over nanoscale currents in materials diagnostics, THz spectroscopies, nanomagnetism and ultrafast information processing. Vectorial optoelectronic metasurfaces are described, showing that light pulses can be used to drive and direct local charge flows around symmetry-broken plasmonic nanostructures, leading to tunable responses in terahertz emission.
Microscale shear specimens for evaluating the shear deformation in single-crystal and nanocrystalline Cu and at Cu–Si interfaces
Microscale testing has enjoyed significant developments, with the majority of testing focused on tensile/compression type tests and little focus on shear testing. With the recent advances in macroscale shear testing, we developed a novel shear structure for evaluating shear properties of bulk materials and films at the microscale. The shear response in single-crystal copper oriented along the [111] direction was found to have a yield strength of ∼180 MPa. Nanocrystalline copper specimens with different orientations showed sensitivity to the film texture with a shear yield strength nearly three times that of single-crystal copper. Shear specimens were fabricated with Cu film–Si substrate interface near the middle of the shear region and compressed to fracture. The shear response showed a mixed behavior of the stiff Si substrate and softer nanocrystalline film and failed in a brittle manner, indicating a response unique to the interface.
Flow-based solution–liquid–solid nanowire synthesis
Discovered almost two decades ago, the solution–liquid–solid (SLS) method for semiconductor nanowire synthesis has proven to be an important route to high-quality, single-crystalline anisotropic nanomaterials. In execution, the SLS technique is similar to colloidal quantum-dot synthesis in that it entails the injection of chemical precursors into a hot surfactant solution, but mechanistically it is considered the solution-phase analogue to vapour–liquid–solid (VLS) growth. Both SLS and VLS methods make use of molten metal nanoparticles to catalyse the nucleation and elongation of single-crystalline nanowires. Significantly, however, the methods differ in how chemical precursors are introduced to the metal catalysts. In SLS, precursors are added in a one-off fashion in a flask, whereas in VLS they are carried by a flow of gas through the reaction chamber, and by-products are removed similarly. The ability to dynamically control the introduction of reactants and removal of by-products in VLS synthesis has enabled a degree of synthetic control not possible with SLS growth. We show here that SLS synthesis can be transformed into a continuous technique using a microfluidic reactor. The resulting flow-based SLS (‘flow-SLS’) platform allows us to slow down the synthesis of nanowires and capture mechanistic details concerning their growth in the solution phase, as well as synthesize technologically relevant axially heterostructured semiconductor nanowires, while maintaining the propensity of SLS for accessing ultrasmall diameters below 10 nm. The solution–liquid–solid process is carried out in a microfluidic reactor to support the continuous synthesis of semiconductor nanowires in solution.
Ion irradiation induced phase transformation in gold nanocrystalline films
Gold is a noble metal typically stable as a solid in a face-centered cubic (FCC) structure under ambient conditions; however, under particular circumstances aberrant allotropes have been synthesized. In this work, we document the phase transformation of 25 nm thick nanocrystalline (NC) free-standing gold thin-film via in situ ion irradiation studied using atomic-resolution transmission electron microscopy (TEM). Utilizing precession electron diffraction (PED) techniques, crystallographic orientation and the radiation-induced relative strains were measured and furthermore used to determine that a combination of surface and radiation-induced strains lead to an FCC to hexagonal close packed (HCP) crystallographic phase transformation upon a 10 dpa radiation dose of Au 4+ ions. Contrary to previous studies, HCP phase in nanostructures of gold was stabilized and did not transform back to FCC due to a combination of size effects and defects imparted by damage cascades.
Implications of Microstructure in Helium-Implanted Nanocrystalline Metals
Helium bubbles are known to form in nuclear reactor structural components when displacement damage occurs in conjunction with helium exposure and/or transmutation. If left unchecked, bubble production can cause swelling, blistering, and embrittlement, all of which substantially degrade materials and—moreover—diminish mechanical properties. On the mission to produce more robust materials, nanocrystalline (NC) metals show great potential and are postulated to exhibit superior radiation resistance due to their high defect and particle sink densities; however, much is still unknown about the mechanisms of defect evolution in these systems under extreme conditions. Here, the performances of NC nickel (Ni) and iron (Fe) are investigated under helium bombardment via transmission electron microscopy (TEM). Bubble density statistics are measured as a function of grain size in specimens implanted under similar conditions. While the overall trends revealed an increase in bubble density up to saturation in both samples, bubble density in Fe was over 300% greater than in Ni. To interrogate the kinetics of helium diffusion and trapping, a rate theory model is developed that substantiates that helium is more readily captured within grains in helium-vacancy complexes in NC Fe, whereas helium is more prone to traversing the grain matrices and migrating to GBs in NC Ni. Our results suggest that (1) grain boundaries can affect bubble swelling in grain matrices significantly and can have a dominant effect over crystal structure, and (2) an NC-Ni-based material can yield superior resistance to irradiation-induced bubble growth compared to an NC-Fe-based material and exhibits high potential for use in extreme environments where swelling due to He bubble formation is of significant concern.
Perspectives on Novel Refractory Amorphous High-Entropy Alloys in Extreme Environments
Two new refractory amorphous high-entropy alloys (RAHEAs) within the W--Ta--Cr--V and W--Ta--Cr--V--Hf systems were herein synthesized using magnetron-sputtering and tested under high-temperature annealing and displacing irradiation using \\textit{in situ} Transmission Electron Microscopy. While the WTaCrV RAHEA was found to be unstable under such tests, additions of Hf in this system composing a new quinary WTaCrVHf RAHEA was found to be a route to achieve stability both under annealing and irradiation. A new effect of nanoprecipitate reassembling observed to take place within the WTaCrVHf RAHEA under irradiation indicates that a duplex microstructure composed of an amorphous matrix with crystalline nanometer-sized precipitates enhances the radiation response of the system. It is demonstrated that tunable chemical complexity arises as a new alloy design strategy to foster the use of novel RAHEAs within extreme environments. New perspectives for the alloy design and application of chemically-complex amorphous metallic alloys in extreme environments are presented with focus on their thermodynamic phase stability when subjected to high-temperature annealing and displacing irradiation.