Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Reading Level
      Reading Level
      Clear All
      Reading Level
  • Content Type
      Content Type
      Clear All
      Content Type
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Item Type
    • Is Full-Text Available
    • Subject
    • Publisher
    • Source
    • Donor
    • Language
    • Place of Publication
    • Contributors
    • Location
253 result(s) for "Ballesteros, Daniel"
Sort by:
Solid-State Biology and Seed Longevity: A Mechanical Analysis of Glasses in Pea and Soybean Embryonic Axes
The cytoplasm of anhydrobiotes (organisms that persist in the absence of water) solidifies during drying. Despite this stabilization, anhydrobiotes vary in how long they persist while dry. In this paper, we call upon concepts currently used to explain stability of amorphous solids (also known as glasses) in synthetic polymers, foods, and pharmaceuticals to the understand variation in longevity of biological systems. We use embryonic axes of pea ( ) and soybean ( ) seeds as test systems that have relatively long and short survival times, respectively, but similar geometries and water sorption behaviors. We used dynamic mechanical analysis to gain insights on structural and mobility properties that relate to stability of other organic systems with controlled composition. Changes of elastic and loss moduli, and the dissipation function, tan δ, in response to moisture and temperature were compared in pea and soybean axes containing less than 0.2 g H O g dry mass. The work shows high complexity of structure-regulated molecular mobility within dried seed matrices. As was previously observed for pea cotyledons, there were multiple relaxations of structural constraints to molecular movement, which demonstrate substantial localized, \"fast\" motions within solidified cytoplasm. There was detected variation in the coordination among long-range slow, diffusive and short-range fast, vibrational motions in glasses of pea compared to soybean, which suggest higher constraints to motion in pea and greater \"fragility\" in soybean. We are suggesting that differences in fragility contribute to variation of seed longevity. Indeed, fragility and coordination of short and long range motions are linked to stability and physical aging of synthetic polymers.
Seed Longevity—The Evolution of Knowledge and a Conceptual Framework
The lifespan or longevity of a seed is the time period over which it can remain viable. Seed longevity is a complex trait and varies greatly between species and even seed lots of the same species. Our scientific understanding of seed longevity has advanced from anecdotal ‘Thumb Rules,’ to empirically based models, biophysical explanations for why those models sometimes work or fail, and to the profound realisation that seeds are the model of the underexplored realm of biology when water is so limited that the cytoplasm solidifies. The environmental variables of moisture and temperature are essential factors that define survival or death, as well as the timescale to measure lifespan. There is an increasing understanding of how these factors induce cytoplasmic solidification and affect glassy properties. Cytoplasmic solidification slows down, but does not stop, the chemical reactions involved in ageing. Continued degradation of proteins, lipids and nucleic acids damage cell constituents and reduce the seed’s metabolic capacity, eventually impairing the ability to germinate. This review captures the evolution of knowledge on seed longevity over the past five decades in relation to seed ageing mechanisms, technology development, including tools to predict seed storage behaviour and non-invasive techniques for seed longevity assessment. It is concluded that seed storage biology is a complex science covering seed physiology, biophysics, biochemistry and multi-omic technologies, and simultaneous knowledge advancement in these areas is necessary to improve seed storage efficacy for crops and wild species biodiversity conservation.
Dry architecture: towards the understanding of the variation of longevity in desiccation-tolerant germplasm
Desiccation-tolerant (DT) plant germplasm (i.e. seeds, pollen and spores) survive drying to low moisture contents, when cytoplasm solidifies, forming a glass, and chemical reactions are slowed. DT germplasm may survive for long periods in this state, though inter-specific and intra-specific variation occurs and is not currently explained. Such variability has consequences for agriculture, forestry and biodiversity conservation. Longevity was previously considered in the context of morphological features, cellular constituents or habitat characteristics. We suggest, however, that a biophysical perspective, which considers the molecular organization - or structure - within dried cytoplasm, can provide a more integrated understanding of the fundamental mechanisms that control ageing rates, hence the variation of longevity among species and cell types. Based on biochemical composition and physical-chemical properties of dried materials, we explore three types of the interplay between structural conformations of dried cytoplasm and ageing: (1) cells that lack chlorophyll and contain few storage lipids may exhibit long shelf life, with ageing probably occurring through slow autoxidative processes within the glassy matrix as it relaxes; (2) cells with active chlorophyll may die quickly, possibly because they are prone to oxidative stress promoted by the photosynthetic pigments in the absence of metabolic water and (3) cells that lack chloroplasts but contain high storage lipids may die quickly during storage at −20°C, possibly because lipids crystallize and destabilize the glassy matrix. Understanding the complex variation in structural conformation in space and time may help to design strategies that increase longevity in germplasm with generally poor shelf life.
Current status of the cryopreservation of embryogenic material of woody species
Cryopreservation, or the storage at liquid nitrogen temperatures (-196°C), of embryogenic cells or somatic embryos allows their long-term conservation without loss of their embryogenic capacity. During the last decade, protocols for cryopreservation of embryogenic material of woody species have been increasing in number and importance. However, despite the large experimental evidence proved in thousands of embryogenic lines, the application for the large-scale conservation of embryogenic material in cryobanks is still limited. Cryopreservation facilitates the management of embryogenic lines, reducing costs and time spent on their maintenance, thus limiting the risk of the appearance of somaclonal variation or contamination. Somatic embryogenesis in combination with cryopreservation is especially useful to preserve the juvenility of lines while the corresponding clones are being field-tested. Hence, when tree performance has been evaluated, selected varieties can be propagated from the cryostock. The traditional method of slow cooling or techniques based on vitrification are mostly applied procedures. For example, slow cooling methods are widely applied to conserve embryogenic lines of conifers. Desiccation based procedures, although simpler, have been applied in a smaller number of species. Genetic stability of the cryopreserved material is supported by multiloci PCR-derived markers in most of the assayed species, whereas DNA methylation status assays showed that cryopreservation might induce some changes that were also observed after prolonged subculture of the embryogenic lines. This article reviews the cryopreservation of embryogenic cultures in conifers, fruit species, deciduous forest species and palms, including a description of the different cryopreservation procedures and the analysis of their genetic stability after storage in liquid nitrogen.
The potential impacts of climate change on ex situ conservation options for recalcitrant-seeded species
Recalcitrant seeds are characterized by desiccation and freezing sensitivity, and short storage longevity. These physiological attributes obviate their ex situ conservation in conventional seed banks, where seeds are stored dry at subzero temperatures (typically, 15% relative humidity and -20 C) for extended periods of time. Propagation of plants for field collections (e.g., botanical gardens, nurseries, and arboretums) is a valuable ex situ conservation option. However, these collections are relatively costly, require high maintenance, preserve limited genetic diversity and/or are directly exposed to biotic (e.g., pests) and abiotic (e.g., climatic) threats. Therefore, recalcitrant-seeded (RS) species are dependent on cryopreservation for their safe and long-term ex situ conservation. Different explant sources such as whole seeds, zygotic embryos, dormant buds, shoot tips, and pollen, can be used for plant propagation of RS species in field collections as well as for their cryopreservation. The success of the propagation or the cryopreservation of these explants often depends on their developmental status, vigor, and/or tolerance to desiccation and chilling/freezing. These attributes are modulated by the environment where the donor plant grows and we hypothesize that climate change, by affecting these biological attributes, would impact the success of explant propagation and cryopreservation. To support this hypothesis, we have reviewed how temperature changes and drought, the two main climate change scenarios, affect the main biological attributes that are directly involved in the success of ex situ conservation of tropical and temperate RS species. In general, increases in temperature and drought will negatively affect plant development in field collections and the quality of the explants used in cryopreservation. Consequently, field collections of RS species may need to be moved to more suitable places (e.g., higher latitudes/altitudes). Additionally, we may find a reduction in the success of cryopreservation of RS species germplasm directly harvested from field collections. However, we cannot always generalize these effects for all species since they often depend on the origin of the species (e.g., tropical and temperate species tend to respond to climate change differently), the genotype, the adaptive genetic potential of each population, and the severity of the environmental change. On the other hand, the increase in temperatures and water stress in donor plants at high-latitude areas and also some tropical environments may favor the production of seeds and seedlings better adapted to drying, and hence, increase the success of plant propagation and zygotic embryo cryopreservation.
An Overview of the Biolubricant Production Process: Challenges and Future Perspectives
The term biolubricant applies to all lubricants that are easily biodegradable and non-toxic to humans and the environment. The uses of biolubricant are still very limited when compared to those of mineral oils, although this trend is increasing and depends on investment in research and development (R&D). The increase in demand for biodegradable lubricants is related to the evolution of environmental regulations, with more restrictive rules being implemented to minimize environmental impact caused by inappropriate disposal. This study provides an overview of the types, production routes, properties, and applications of biolubricants. Biolubricants are classified as either natural or synthetic oils according to chemical composition. Natural oils are of animal or vegetable origin and are rarely used because they are unstable at high temperatures and form compounds that are harmful to equipment and machines. Synthetic oils are obtained from chemical reactions and are the best lubricants for demanding applications. They are obtained by various routes, mainly by obtaining straight or branched-chain monoesters, diesters, triesters, and polyol esters from vegetable oils. The conversion of triglyceride to esters can be followed or preceded by one or more reactions to improve reactions such as epoxidation and hydrogenation.
A novel peptidoglycan deacetylase modulates daughter cell separation in E. coli
Peptidoglycan hydrolases facilitate bacterial cell wall growth by creating space for insertion of new material and allowing physical separation of daughter cells. In Escherichia coli , three peptidoglycan amidases, AmiA, AmiB and AmiC, cleave septal peptidoglycan during cell division. The LytM-domain proteins EnvC, NlpD and ActS activate these amidases either from inside the cell or the outer membrane: EnvC binds to the cytoplasmic membrane-anchored divisome components FtsEX, while NlpD and ActS are outer membrane-anchored lipoproteins. Here we report the identification of a novel periplasmic deacetylase called SddA that removes acetyl groups from denuded peptidoglycan glycan strands, the products of amidases. The sddA gene is co-expressed with the gene encoding EnvC, linking SddA function to amidase activation. Consistent with this link, the deletion of sddA alleviates phenotypes associated with lack of amidase activation, while overexpression of sddA alleviates phenotypes related to a defective Tol-Pal system and causes cell chaining due to reduced septum peptidoglycan cleavage. We present a model according to which SddA modulates the activation of the septum-splitting amidases during cell division.
Stratigraphical influence on chalk cave development in Upper Normandy, France: implications for chalk hydrogeology
Classically, the Upper Cretaceous Chalk Group aquifer of northwest Europe is conceptualized as a homogenous dual-porosity aquifer, with high porosity related to its fine-grained porous matrix, and intermediate hydraulic conductivity associated with fractures. However, an increasing number of hydrological studies visualize the Chalk as a heterogeneous karst aquifer due to the localised presence of dissolutionally enlarged conduits. Field investigation suggests that cave development is guided by distinct stratigraphical and tectonic discontinuities within the rock mass. Identifying which potential inception horizons within the Chalk aquifer are favoured, and why, is important for developing future robust conceptual models of groundwater behaviour. This study focusses on the Chalk of the Upper Normandy region in France where karstic conduits are common and are linked to major sources of groundwater for public water supply. We analyse the geometry and geomorphology of six chalk caves exposed in the Seine Valley with an aggregated length of over 5.7 km, along with other caves in southern England, and identify the key inception horizons associated with their development. The data shows that prominent Turonian, Coniacian and Santonian hardgrounds have influenced the development of 68% of the studied caves length, with sheet-flints and marl seams also playing a prominent role. Caves developed on or between hardgrounds typically display a complex interlinked anastomotic passage network, whereas passages subjected to paragenetic conditions caused by a high sediment flux tend to be concentrated into fewer, larger conduits. The new evidence from Normandy and Southern England demonstrates the role of lithostratigraphy, and in particular stratigraphical discontinuities on conduit development. The data reinforces the idea that the Chalk aquifer should be viewed as a heterogeneous triple porosity karstic aquifer, in which conduit development is influenced by key stratigraphical discontinuities. This improved conceptual model can be used to develop better groundwater flow models and improved catchment delineation.
Plant Diversity Conservation Challenges and Prospects—The Perspective of Botanic Gardens and the Millennium Seed Bank
There is a pressing need to conserve plant diversity to prevent extinctions and to enable sustainable use of plant material by current and future generations. Here, we review the contribution that living collections and seed banks based in botanic gardens around the world make to wild plant conservation and to tackling global challenges. We focus in particular on the work of Botanic Gardens Conservation International and the Millennium Seed Bank of the Royal Botanic Gardens, Kew, with its associated global Partnership. The advantages and limitations of conservation of plant diversity as both living material and seed collections are reviewed, and the need for additional research and conservation measures, such as cryopreservation, to enable the long-term conservation of ‘exceptional species’ is discussed. We highlight the importance of networks and sharing access to data and plant material. The skill sets found within botanic gardens and seed banks complement each other and enable the development of integrated conservation (linking in situ and ex situ efforts). Using a number of case studies we demonstrate how botanic gardens and seed banks support integrated conservation and research for agriculture and food security, restoration and reforestation, as well as supporting local livelihoods.