Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
248 result(s) for "Bamba, Kazuharu"
Sort by:
Observational constraints on the jerk parameter with the data of the Hubble parameter
We study the accelerated expansion phase of the universe by using the kinematic approach. In particular, the deceleration parameter q is parametrized in a model-independent way. Considering a generalized parametrization for q, we first obtain the jerk parameter j (a dimensionless third time derivative of the scale factor) and then confront it with cosmic observations. We use the latest observational dataset of the Hubble parameter H(z) consisting of 41 data points in the redshift range of \\[0.07 \\le z \\le 2.36\\], larger than the redshift range that covered by the Type Ia supernova. We also acquire the current values of the deceleration parameter \\[q_0\\], jerk parameter \\[j_0\\] and transition redshift \\[z_t\\] (at which the expansion of the universe switches from being decelerated to accelerated) with \\[1\\sigma \\] errors (\\[68.3\\%\\] confidence level). As a result, it is demonstrate that the universe is indeed undergoing an accelerated expansion phase following the decelerated one. This is consistent with the present observations. Moreover, we find the departure for the present model from the standard \\[\\Lambda \\]CDM model according to the evolution of j. Furthermore, the evolution of the normalized Hubble parameter is shown for the present model and it is compared with the dataset of H(z).
Casimir wormholes in modified symmetric teleparallel gravity
In recent years there has been a growing interest in the field of Casimir wormhole. In classical general relativity (GR), it is known that the null energy condition (NEC) has to be violated to have a wormhole to be stable. The Casimir effect is an experimentally verified effect that is caused due to the vacuum field fluctuations in quantum field theory. Since the Casimir effect provides the negative energy density, thus this act as an ideal candidate for the exotic matter needed for the stability of the wormhole. In this paper, we study the Casimir effect on the wormhole geometry in modified symmetric teleparallel gravity or f(Q) gravity, where the non-metricity scalar Q drives the gravitation interaction. We consider three systems of the Casimir effect such as (i) two parallel plates, (ii) two parallel cylindrical plates, and (iii) two-sphere separated by a large distance to make it more experimentally feasible. Further, we studied the obtained wormhole solutions for each case with energy conditions at the wormhole throat with radius r0 and found that some arbitrary quantity violates the classical energy conditions at the wormhole throat. Furthermore, the behavior of the equation of state (EoS) is also analyzed for each case. Finally, we investigate the stability of the obtained Casimir effect wormhole solutions with the generalized Tolman–Oppenheimer–Volkoff (TOV) equation.
Constraints on the magnetized Ernst black hole spacetime through quasiperiodic oscillations
We study the dynamics of test particles around a magnetized Ernst black hole considering its magnetic field in the environment surrounding the black hole. We show how its magnetic field can influence the dynamics of particles and epicyclic motion around the black hole. Based on the analysis, we find that the radius of the innermost stable circular orbit (ISCO) for both neutral and charged test particles and epicyclic frequencies are strongly affected by the influence of the magnetic field. We also show that the ISCO radius of charged particles decreases rapidly. It turns out that the gravitational and Lorentz forces of the magnetic field are combined, thus strongly shrinking the values of the ISCO of charged test particles. Finally, we obtain the generic form for the epicyclic frequencies and select three microquasars with known astrophysical quasiperiodic oscillation (QPO) data to constrain the magnetic field. We show that the magnetic field is of the order of magnitude B∼10-7 Gauss, taking into account the motion of neutral particles in circular orbit about the black hole.
A generalized interacting Tsallis holographic dark energy model and its thermodynamic implications
The present paper deals with a theoretical model for interacting Tsallis holographic dark energy (THDE) whose infrared cut-off scale is set by the Hubble length. The interaction Q between the dark sectors (dark energy and pressureless dark matter) of the universe has been assumed to be non-gravitational in nature. The functional form of Q is chosen in such a way that it reproduces well known and most used interactions as special cases. We then study the nature of the THDE density parameter, the equation of state parameter, the deceleration parameter and the jerk parameter for this interacting THDE model. Our study shows that the universe exhibits the usual thermal history, namely the successive sequence of radiation, dark matter and dark energy epochs, before resulting in a complete dark energy domination in the far future. It is shown the evolution of the Hubble parameter for our model and compared that with the latest Hubble parameter data. Finally, we also investigate both the stability and thermodynamic nature of this model in the present context.
Thermodynamics in Rastall gravity with entropy corrections
We explore the thermodynamic analysis at the apparent horizon in the framework of Rastall theory of gravity. We take different entropies such as the Bakenstein, logarithmic corrected, power law corrected, and the Renyi entropies. We investigate the first law and generalized second law of thermodynamics analytically for these entropies which hold under certain conditions. Furthermore, the behavior of the total entropy in each case is analyzed. As a result, it is implied that the generalized second law of thermodynamics is satisfied. We also check whether the thermodynamic equilibrium condition for these entropies is met at the present horizon.
Note on Tsallis holographic dark energy
We explore the effects of considering various infrared (IR) cutoffs, including the particle horizon, the Ricci horizon and the Granda–Oliveros (GO) cutoffs, on the properties of Tsallis holographic dark energy (THDE) model, proposed inspired by Tsallis generalized entropy formalism (Tavayef et al. in Phys Lett B 781:195, 2018). Interestingly enough, we find that for the particle horizon as IR cutoff, the obtained THDE model can describe the late time accelerated universe. This is in contrast to the usual HDE model which cannot lead to an accelerated universe, if one considers the particle horizon as the IR cutoff. We also investigate the cosmological consequences of THDE under the assumption of a mutual interaction between the dark sectors of the Universe. It is shown that the evolution history of the Universe can be described by these IR cutoffs and thus the current cosmic acceleration can also be realized. The sound instability of the THDE models for each cutoff are also explored, separately.
Bouncing cosmology in modified gravity with higher-order curvature terms
A bstract A bouncing scenario of a flat homogeneous and isotropic universe is explored by using the reconstruction technique for the power-law parametrization of the Hubble parameter in a modified gravity theory with higher-order curvature and trace of the energy-momentum tensor terms. It is demonstrated that bouncing criteria are satisfied so that the cosmological initial singularity can be avoided. In addition, it is shown that the equation of state parameter crosses the line of the phantom divide. In the present scenario, the universe is filled with perfect fluid around the bouncing point, in which the universe becomes highly unstable and a big bounce can be realized. Furthermore, it is found that extremal acceleration occurs at the bouncing point.
Autonomous systems and attractor behaviors in non-metricity gravity: stability analysis and cosmic acceleration
The cosmological dynamics are rigorously investigated through the systematic application of autonomous system analysis to the gravitational field equations in non-metricity gravity. The systematic procedure to analyze the late-time cosmic acceleration in higher-order non-metricity gravity is demonstrated by exploring non-hyperbolic critical points with the center manifold theory. The stability properties of these critical points are also evaluated based on the analysis of eigenvalues and phase portraits. It is explicitly shown that the stable node can be realized. The critical points of each model are individually analyzed, and their corresponding cosmological implications are derived. The stability properties of these critical points are evaluated based on the analysis of eigenvalues and phase portraits, revealing that each model includes at least one stable node. Furthermore, the evolution plots of the cosmological parameters confirm the models’ capacity to exhibit accelerated expansion.