Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
21 result(s) for "Band, Victor I."
Sort by:
Heteroresistance: A cause of unexplained antibiotic treatment failure?
About the Authors: Victor I. Band Affiliations Emory Antibiotic Resistance Center, Emory University, Atlanta, Georgia, United States of America, Emory Vaccine Center, Emory University, Atlanta, Georgia, United States of America David S. Weiss * E-mail: david.weiss@emory.edu Affiliations Emory Antibiotic Resistance Center, Emory University, Atlanta, Georgia, United States of America, Emory Vaccine Center, Emory University, Atlanta, Georgia, United States of America, Division of Infectious Diseases, Department of Medicine, Emory University School of Medicine, Emory University, Atlanta, Georgia, United States of America ORCID logo http://orcid.org/0000-0003-0980-7866 Citation: Band VI, Weiss DS (2019) Heteroresistance: A cause of unexplained antibiotic treatment failure? According to the Centers for Disease Control and Prevention (CDC), over 2 million infections every year in the United States are caused by antibiotic-resistant bacteria, resulting in at least 23,000 deaths and US$55 billion in increased healthcare costs and lost productivity [1]. [...]even when a bacterial isolate is classified as susceptible to a given antibiotic, it is expected that antibiotic therapy will fail 10% of the time [26]. [...]the burden of such unexplained treatment failures is significant, and HR is a possible cause. Some cancers have been observed to harbor a small population of phenotypically resistant cells exhibiting chromatin modifications, allowing the cells to resist 500-times-greater concentrations of chemotherapeutic tyrosine kinase inhibitors [31]. [...]HR or similar phenomena may explain the resistance of some cancers to chemotherapeutics when the majority of the tumor cells appear to respond to therapy.
Heteroresistance to beta-lactam antibiotics may often be a stage in the progression to antibiotic resistance
Antibiotic resistance is a growing crisis that threatens many aspects of modern healthcare. Dogma is that resistance often develops due to acquisition of a resistance gene or mutation and that when this occurs, all the cells in the bacterial population are phenotypically resistant. In contrast, heteroresistance (HR) is a form of antibiotic resistance where only a subset of cells within a bacterial population are resistant to a given drug. These resistant cells can rapidly replicate in the presence of the antibiotic and cause treatment failures. If and how HR and resistance are related is unclear. Using carbapenem-resistant Enterobacterales (CRE), we provide evidence that HR to beta-lactams develops over years of antibiotic usage and that it is gradually supplanted by resistance. This suggests the possibility that HR may often develop before resistance and frequently be a stage in its progression, potentially representing a major shift in our understanding of the evolution of antibiotic resistance.
Carbapenem-Resistant Klebsiella pneumoniae Exhibiting Clinically Undetected Colistin Heteroresistance Leads to Treatment Failure in a Murine Model of Infection
Antibiotic resistance is a growing crisis and a grave threat to human health. It is projected that antibiotic-resistant infections will lead to 10 million annual deaths worldwide by the year 2050. Among the most significant threats are carbapenem-resistant Enterobacteriaceae (CRE), including carbapenem-resistant Klebsiella pneumoniae (CRKP), which lead to mortality rates as high as 40 to 50%. Few treatment options are available to treat CRKP, and the polymyxin antibiotic colistin is often the “last-line” therapy. However, resistance to colistin is increasing. Here, we identify multidrug-resistant, carbapenemase-positive CRKP isolates that were classified as susceptible to colistin by clinical diagnostics yet harbored a minor subpopulation of phenotypically resistant cells. Within these isolates, the resistant subpopulation became predominant after growth in the presence of colistin but returned to baseline levels after subsequent culture in antibiotic-free media. This indicates that the resistance was phenotypic, rather than due to a genetic mutation, consistent with heteroresistance. Importantly, colistin therapy was unable to rescue mice infected with the heteroresistant strains. These findings demonstrate that colistin heteroresistance may cause in vivo treatment failure during K. pneumoniae infection, threatening the use of colistin as a last-line treatment for CRKP. Furthermore, these data sound the alarm for use of caution in interpreting colistin susceptibility test results, as isolates identified as susceptible may in fact resist antibiotic therapy and lead to unexplained treatment failures. IMPORTANCE This is the first report of colistin-heteroresistant K. pneumoniae in the United States. Two distinct isolates each led to colistin treatment failure in an in vivo model of infection. The data are worrisome, especially since the colistin heteroresistance was not detected by current diagnostic tests. As these isolates were carbapenem resistant, clinicians might turn to colistin as a last-line therapy for infections caused by such strains, not knowing that they in fact harbor a resistant subpopulation of cells, potentially leading to treatment failure. Our findings warn that colistin susceptibility testing results may be unreliable due to undetected heteroresistance and highlight the need for more accurate and sensitive diagnostics. This is the first report of colistin-heteroresistant K. pneumoniae in the United States. Two distinct isolates each led to colistin treatment failure in an in vivo model of infection. The data are worrisome, especially since the colistin heteroresistance was not detected by current diagnostic tests. As these isolates were carbapenem resistant, clinicians might turn to colistin as a last-line therapy for infections caused by such strains, not knowing that they in fact harbor a resistant subpopulation of cells, potentially leading to treatment failure. Our findings warn that colistin susceptibility testing results may be unreliable due to undetected heteroresistance and highlight the need for more accurate and sensitive diagnostics.
Colistin Heteroresistance Is Largely Undetected among Carbapenem-Resistant Enterobacterales in the United States
Heteroresistance is an underappreciated phenomenon that may be the cause of some unexplained antibiotic treatment failures. Misclassification of heteroresistant isolates as susceptible may lead to inappropriate therapy. Heteroresistance is a form of antibiotic resistance where a bacterial strain is comprised of a minor resistant subpopulation and a majority susceptible subpopulation. We showed previously that colistin heteroresistance can mediate the failure of colistin therapy in an in vivo infection model, even for isolates designated susceptible by clinical diagnostics. We sought to characterize the extent of colistin heteroresistance among the highly drug-resistant carbapenem-resistant Enterobacterales (CRE). We screened 408 isolates for colistin heteroresistance. These isolates were collected between 2012 and 2015 in eight U.S. states as part of active surveillance for CRE. Colistin heteroresistance was detected in 10.1% (41/408) of isolates, and it was more common than conventional homogenous resistance (7.1%, 29/408). Most (93.2%, 38/41) of these heteroresistant isolates were classified as colistin susceptible by standard clinical diagnostic testing. The frequency of colistin heteroresistance was greatest in 2015, the last year of the study. This was especially true among Enterobacter isolates, of which specific species had the highest rates of heteroresistance. Among Klebsiella pneumoniae isolates, which were the majority of isolates tested, there was a closely related cluster of colistin-heteroresistant ST-258 isolates found mostly in Georgia. However, cladistic analysis revealed that, overall, there was significant diversity in the genetic backgrounds of heteroresistant K. pneumoniae isolates. These findings suggest that due to being largely undetected in the clinic, colistin heteroresistance among CRE is underappreciated in the United States. IMPORTANCE Heteroresistance is an underappreciated phenomenon that may be the cause of some unexplained antibiotic treatment failures. Misclassification of heteroresistant isolates as susceptible may lead to inappropriate therapy. Heteroresistance to colistin was more common than conventional resistance and was overwhelmingly misclassified as susceptibility by clinical diagnostic testing. Higher proportions of colistin heteroresistance observed in certain Enterobacter species and clustering among heteroresistant Klebsiella pneumoniae strains may inform colistin treatment recommendations. Overall, the rate of colistin nonsusceptibility was more than double the level detected by clinical diagnostics, suggesting that the prevalence of colistin nonsusceptibility among CRE may be higher than currently appreciated in the United States.
Antibiotic failure mediated by a resistant subpopulation in Enterobacter cloacae
Antibiotic resistance is a major public health threat, further complicated by unexplained treatment failures caused by bacteria that appear antibiotic susceptible. We describe an Enterobacter cloacae isolate harbouring a minor subpopulation that is highly resistant to the last-line antibiotic colistin. This subpopulation was distinct from persisters, became predominant in colistin, returned to baseline after colistin removal and was dependent on the histidine kinase PhoQ. During murine infection, but in the absence of colistin, innate immune defences led to an increased frequency of the resistant subpopulation, leading to inefficacy of subsequent colistin therapy. An isolate with a lower-frequency colistin-resistant subpopulation similarly caused treatment failure but was misclassified as susceptible by current diagnostics once cultured outside the host. These data demonstrate the ability of low-frequency bacterial subpopulations to contribute to clinically relevant antibiotic resistance, elucidating an enigmatic cause of antibiotic treatment failure and highlighting the critical need for more sensitive diagnostics. An undetected, phenotypically colistin-resistant subpopulation of Enterobacter cloacae mediates antibiotic treatment failure
Absence of mgrB Alleviates Negative Growth Effects of Colistin Resistance in Enterobacter cloacae
Colistin is an important last-line antibiotic to treat highly resistant Enterobacter infections. Resistance to colistin has emerged among clinical isolates but has been associated with a significant growth defect. Here, we describe a clinical Enterobacter isolate with a deletion of mgrB, a regulator of colistin resistance, leading to high-level resistance in the absence of a growth defect. The identification of a path to resistance unrestrained by growth defects suggests colistin resistance could become more common in Enterobacter.
Antibiotic combinations that exploit heteroresistance to multiple drugs effectively control infection
Antibiotic-resistant bacteria are a significant threat to human health, with one estimate suggesting they will cause 10 million worldwide deaths per year by 2050, surpassing deaths due to cancer 1 . Because new antibiotic development can take a decade or longer, it is imperative to effectively use currently available drugs. Antibiotic combination therapy offers promise for treating highly resistant bacterial infections, but the factors governing the sporadic efficacy of such regimens have remained unclear. Dogma suggests that antibiotics ineffective as monotherapy can be effective in combination 2 . Here, using carbapenem-resistant Enterobacteriaceae (CRE) clinical isolates, we reveal the underlying basis for the majority of effective combinations to be heteroresistance. Heteroresistance is a poorly understood mechanism of resistance reported for different classes of antibiotics 3 – 6 in which only a subset of cells are phenotypically resistant 7 . Within an isolate, the subpopulations resistant to different antibiotics were distinct, and over 88% of CRE isolates exhibited heteroresistance to multiple antibiotics (‘multiple heteroresistance’). Combinations targeting multiple heteroresistance were efficacious, whereas those targeting homogenous resistance were ineffective. Two pan-resistant Klebsiella isolates were eradicated by combinations targeting multiple heteroresistance, highlighting a rational strategy to identify effective combinations that employs existing antibiotics and could be clinically implemented immediately. Heteroresistance to multiple antibiotics is prevalent across carbapenem-resistant Enterobacteriaceae clinical isolates, but drug combinations that exploit multiple heteroresistance can be used to effectively treat multidrug-resistant infections.
Distinct developmental pathways generate functionally distinct populations of natural killer cells
Natural killer (NK) cells function by eliminating virus-infected or tumor cells. Here we identified an NK-lineage-biased progenitor population, referred to as early NK progenitors (ENKPs), which developed into NK cells independently of common precursors for innate lymphoid cells (ILCPs). ENKP-derived NK cells (ENKP_NK cells) and ILCP-derived NK cells (ILCP_NK cells) were transcriptionally different. We devised combinations of surface markers that identified highly enriched ENKP_NK and ILCP_NK cell populations in wild-type mice. Furthermore, Ly49H + NK cells that responded to mouse cytomegalovirus infection primarily developed from ENKPs, whereas ILCP_NK cells were better IFNγ producers after infection with Salmonella and herpes simplex virus. Human CD56 dim and CD56 bright NK cells were transcriptionally similar to ENKP_NK cells and ILCP_NK cells, respectively. Our findings establish the existence of two pathways of NK cell development that generate functionally distinct NK cell subsets in mice and further suggest these pathways may be conserved in humans. Bhandoola and colleagues describe the existence of two pathways of NK cell development that generate functionally distinct NK cell subsets in mice, and which may be conserved in humans.
Sulfide is a keystone metabolite for gut homeostasis and immunity
Hydrogen sulfide is a gaseous, reactive molecule specifically enriched in the gastrointestinal tract. Here, we uncover a non-redundant role for sulfide in the control of both microbial and immune homeostasis of the gut. Notably, depletion of sulfide via both pharmaceutical and dietary interventions led to a profound collapse of CD4 T cells in the ileum of the small intestine lamina propria and significant impact on microbial ecology. As a result, mice with reduced sulfide within the gut were deficient in their ability to mount T cell dependent antibody responses to oral vaccine. Mechanistically, our results support the idea that sulfide could act directly on CD4 T cells via enhanced AP-1 activation, leading to heightened proliferation and cytokine production. This study uncovers sulfides as keystone components in gut ecology and provides mechanistic insight between diet, gut sulfide production and mucosal immunity.