Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Language
      Language
      Clear All
      Language
  • Subject
      Subject
      Clear All
      Subject
  • Item Type
      Item Type
      Clear All
      Item Type
  • Discipline
      Discipline
      Clear All
      Discipline
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
23 result(s) for "Bao, Shihua"
Sort by:
The peripheral and decidual immune cell profiles in women with recurrent pregnancy loss
Recurrent pregnancy loss (RPL) affects 1-2% of couples of reproductive age. Immunological analysis of the immune status in RPL patients might contribute to the diagnosis and treatment of RPL. However, the exact immune cell composition in RPL patients is still unclear. Here, we used flow cytometry to investigate the immune cell profiles of peripheral blood and decidual tissue of women who experienced RPL. We divided peripheral immune cells into 14 major subgroups, and the percentages of T, natural killer T (NKT)-like and B cells in peripheral blood were increased in RPL patients. The decidual immune cells were classified into 14 major subpopulations and the percentages of decidual T, NKT-like cells and CD11c hi Mφ were increased, while those of CD56 hi decidual NK cells and CD11c lo Mφ were decreased in RPL patients. The spearmen correlation analysis showed that the proportion of peripheral and decidual immune cells did not show significant correlations with occurrences of previous miscarriages. By using flow cytometry, we depicted the global peripheral and decidual immune landscape in RPL patients. The abnormalities of peripheral and decidual immune cells may be involved in RPL, but the correlations with the number of previous miscarriages need further verification.
Large-scale analysis of de novo mutations identifies risk genes for female infertility characterized by oocyte and early embryo defects
Background Oocyte maturation arrest and early embryonic arrest are important reproductive phenotypes resulting in female infertility and cause the recurrent failure of assisted reproductive technology (ART). However, the genetic etiologies of these female infertility-related phenotypes are poorly understood. Previous studies have mainly focused on inherited mutations based on large pedigrees or consanguineous patients. However, the role of de novo mutations (DNMs) in these phenotypes remains to be elucidated. Results To decipher the role of DNMs in ART failure and female infertility with oocyte and embryo defects, we explore the landscape of DNMs in 473 infertile parent–child trios and identify a set of 481 confident DNMs distributed in 474 genes. Gene ontology analysis reveals that the identified genes with DNMs are enriched in signaling pathways associated with female reproductive processes such as meiosis, embryonic development, and reproductive structure development. We perform functional assays on the effects of DNMs in a representative gene Tubulin Alpha 4a ( TUBA4A ), which shows the most significant enrichment of DNMs in the infertile parent–child trios. DNMs in TUBA4A disrupt the normal assembly of the microtubule network in HeLa cells, and microinjection of DNM TUBA4A cRNAs causes abnormalities in mouse oocyte maturation or embryo development, suggesting the pathogenic role of these DNMs in TUBA4A . Conclusions Our findings suggest novel genetic insights that DNMs contribute to female infertility with oocyte and embryo defects. This study also provides potential genetic markers and facilitates the genetic diagnosis of recurrent ART failure and female infertility.
Dysregulated expression of IDO may cause unexplained recurrent spontaneous abortion through suppression of trophoblast cell proliferation and migration
In pregnancy, trophoblast proliferation, migration and invasion are important for the establishment and maintenance of a successful pregnancy. Impaired trophoblast function has been implicated in recurrent spontaneous abortion (RSA), a major complication of pregnancy, but the underlying mechanisms remain unclear. Indoleamine 2,3-dioxygenase (IDO), an enzyme that catabolizes tryptophan along the kynurenine pathway, is highly expressed in the placenta and serum during pregnancy. Here, we identified a novel function of IDO in regulating trophoblast cell proliferation and migration. We showed that IDO expression and activity were decreased in unexplained recurrent spontaneous abortion (URSA) compared to normal pregnancy. Furthermore, blocking IDO in human trophoblast cells led to reduced proliferation and migration, along with decreased STAT3 phosphorylation and MMP9 expression. Increased STAT3 phosphorylation reversed the IDO knockdown-suppressed trophoblast cell proliferation and migration. In addition, the overexpression of IDO promoted cell proliferation and migration, which could be abolished by the STAT3 signaling inhibitor (AG490). Finally, we observed similar reductions of STAT3 phosphorylation and MMP9 expression in URSA patients. These results indicate that the level of IDO expression may be associated with pregnancy-related complications, such as URSA, by affecting trophoblast cell proliferation and migration via the STAT3 signaling pathway.
Ectopic expression of human TUBB8 leads to increased aneuploidy in mouse oocytes
Aneuploidy seriously compromises female fertility and increases incidence of birth defects. Rates of aneuploidy in human eggs from even young women are significantly higher than those in other mammals. However, intrinsic genetic factors underlying this high incidence of aneuploidy in human eggs remain largely unknown. Here, we found that ectopic expression of human TUBB8 in mouse oocytes increases rates of aneuploidy by causing kinetochore–microtubule (K–MT) attachment defects. Stretched bivalents in mouse oocytes expressing TUBB8 are under less tension, resulting in continuous phosphorylation status of HEC1 by AURKB/C at late metaphase I that impairs the established correct K–MT attachments. This reduced tension in stretched bivalents likely correlates with decreased recruitment of KIF11 on meiotic spindles. We also found that ectopic expression of TUBB8 without its C-terminal tail decreases aneuploidy rates by reducing erroneous K–MT attachments. Importantly, variants in the C-terminal tail of TUBB8 were identified in patients with recurrent miscarriages. Ectopic expression of an identified TUBB8 variant in mouse oocytes also compromises K–MT attachments and increases aneuploidy rates. In conclusion, our study provides novel understanding for physiological mechanisms of aneuploidy in human eggs as well as for pathophysiological mechanisms involved in recurrent miscarriages.
The association of APOH and NCF1 polymorphisms on susceptibility to recurrent pregnancy loss in women with antiphospholipid syndrome
BackgroundRecurrent pregnancy loss (RPL) is the main manifestation of pathological pregnancy in antiphospholipid syndrome (APS) women. The immune state plays a significant role in the occurrence/development of APS and RPL susceptibility, but there is little research on genetic factors.MethodPrevious studies have described the important role of APOH and NCF1 in APS and pregnancy. To explore the association of APOH and NCF1 gene variants with RPL susceptibility in APS patients, we collected and analyzed 871 controls, 182 APS and RPL, and 231 RPL patients. Four single nucleotide polymorphisms (SNPs) (rs1801690, rs52797880, and rs8178847 of APOH and rs201802880 of NCF1) were selected and genotyped.ResultsWe found rs1801690 (p = 0.001, p = 0.003), rs52797880 (p = 8.73e-04, p = 0.001), and rs8178847 (p = 0.001, p = 0.001) of APOH and rs201802880 (p = 3.77e-26, p = 1.31e-26) of NCF1 showed significant differences between APS and RPL patients and controls in allelic and genotype frequencies respectively. Moreover, rs1801690, rs52797880, and rs8178847 showed strong linkage disequilibrium. Especially, our results revealed a complete linkage disequilibrium (D’ = 1) between rs52797880 and rs8178847. Furthermore, higher serum TP (total protein) level was described in APOH rs1801690 CG/GG (p = 0.007), rs52797880 AG/GG (p = 0.033), and rs8178847 CT/TT (p = 0.033), while the higher frequency of positive serum ACA-IgM was found in NCF1 rs201802880 GA (p = 0.017) in APS and RPL patients.ConclusionRs1801690, rs52797880, and rs8178847 of APOH and rs201802880 of NCF1 were associated with RPL susceptibility in APS patients.
A tandem-repeat dimeric RBD protein-based covid-19 vaccine zf2001 protects mice and nonhuman primates
Safe, efficacious, and deployable vaccines are urgently needed to control COVID-19 in the large-scale vaccination campaigns. We report here the preclinical studies of an approved protein subunit vaccine against COVID-19, ZF2001, which contains tandem-repeat dimeric receptor-binding domain (RBD) protein with alum-based adjuvant. We assessed vaccine immunogenicity and efficacy in both mice and non-human primates (NHPs). ZF2001 induced high levels of RBD-binding and SARS-CoV-2 neutralizing antibody in both mice and non-human primates, and elicited balanced T H 1/T H 2 cellular responses in NHPs. Two doses of ZF2001 protected Ad-hACE2-transduced mice against SARS-CoV-2 infection, as detected by reduced viral RNA and relieved lung injuries. In NHPs, vaccination of either 25 μg or 50 μg ZF2001 prevented infection with SARS-CoV-2 in lung, trachea, and bronchi, with milder lung lesions. No evidence of disease enhancement was observed in both animal models. ZF2001 has been approved for emergency use in China, Uzbekistan, Indonesia, and Columbia. The high safety, immunogenicity, and protection efficacy in both mice and NHPs found in this preclinical study was consistent with the results in human clinical trials.
Improved YOLOV8 Network and Application in Safety Helmet Detection
This paper proposes a research method to enhance the accuracy and real-time capability of helmet detection in complex industrial environments, aiming to address the engineering challenges of poor robustness and significant occurrences of both false positives and false negatives in existing detection methods. In this study, the C2F (faster version of CSP Bottleneck with two convolutions) module and FE (FasterNet with EMA) module are integrated into the network architecture of YOLOV8 to form a new attention mechanism module called C2F-FE. This module enhances the model’s perception of safety helmet targets by fusing feature information from different levels and incorporating attention mechanisms while reducing computational overhead. Furthermore, the model is trained and optimized on publicly available safety helmet datasets. Experimental results demonstrate that the improved model exhibits stronger robustness, achieving an accuracy rate of 94.6% and a mAP50 of 99.1% for safety helmet detection in complex construction scenarios, with an inference time of 0.7 ms.
Glutamine Synthetase Contributes to the Regulation of Growth, Conidiation, Sclerotia Development, and Resistance to Oxidative Stress in the Fungus Aspergillus flavus
The basic biological function of glutamine synthetase (Gs) is to catalyze the conversion of ammonium and glutamate to glutamine. This synthetase also performs other biological functions. However, the roles of Gs in fungi, especially in filamentous fungi, are not fully understood. Here, we found that conditional disruption of glutamine synthetase (AflGsA) gene expression in Aspergillus flavus by using a xylose promoter leads to a complete glutamine deficiency. Supplementation of glutamine could restore the nutritional deficiency caused by AflGsA expression deficiency. Additionally, by using the xylose promoter for the downregulation of AflgsA expression, we found that AflGsA regulates spore and sclerotic development by regulating the transcriptional levels of sporulation genes abaA and brlA and the sclerotic generation genes nsdC and nsdD, respectively. In addition, AflGsA was found to maintain the balance of reactive oxygen species (ROS) and to aid in resisting oxidative stress. AflGsA is also involved in the regulation of light signals through the production of glutamine. The results also showed that the recombinant AflGsA had glutamine synthetase activity in vitro and required the assistance of metal ions. The inhibitor molecule L-α-aminoadipic acid suppressed the activity of rAflGsA in vitro and disrupted the morphogenesis of spores, sclerotia, and colonies in A. flavus. These results provide a mechanistic link between nutrition metabolism and glutamine synthetase in A. flavus and suggest a strategy for the prevention of fungal infection.
A Blood‐Responsive AIE Bioprobe for the Ultrasensitive Detection and Assessment of Subarachnoid Hemorrhage
Subarachnoid hemorrhage (SAH) is a severe subtype of stroke caused by the rupturing of blood vessels in the brain. The ability to accurately assess the degree of bleeding in an SAH model is crucial for understanding the brain‐damage mechanisms and developing therapeutic strategies. However, current methods are unable to monitor microbleeding owing to their limited sensitivities. Herein, a new bleeding assessment system using a bioprobe TTVP with aggregation‐induced emission (AIE) characteristics is demonstrated. TTVP is a water‐soluble, small‐molecule probe that specifically interacts with blood. Taking advantage of its AIE characteristics, cell membranes affinity, and albumin‐targeting ability, TTVP fluoresces in bleeding areas and detects the presence of blood with a high signal‐to‐noise (S/N) ratio. The degree of SAH bleeding in an endovascular perforation model is clearly evaluated based on the intensity of the fluorescence observed in the brain, which enables the ultrasensitive detection of mirco‐bleeding in the SAH model in a manner that outperforms the current imaging strategies. This method serves as a promising tool for the sensitive analysis of the degree of bleeding in SAHs and other hemorrhagic diseases. An ultrasensitive blood‐responsive probe with unique features for detecting blood and assessing bleeding in a mouse model of subarachnoid hemorrhage (SAH) is presented. By exploiting its aggregation‐induced emission (AIE) characteristics, cell membrane affinity, and albumin‐targeting ability, the bleeding degree of SAH can be sensitively evaluated from the intensity of the fluorescence observed in the brain.
Riociguat prevents hyperoxia-induced lung injury and pulmonary hypertension in neonatal rats without effects on long bone growth
Bronchopulmonary dysplasia (BPD) remains the most common and serious chronic lung disease of premature infants. Severe BPD complicated with pulmonary hypertension (PH) increases the mortality of these infants. Riociguat is an allosteric soluble guanylate cyclase stimulator and is approved by the FDA for treating PH in adults. However, it has not been approved for use in neonates due to concern for adverse effects on long bone growth. To address this concern we investigated if administration of riociguat is beneficial in preventing hyperoxia-induced lung injury and PH without side effects on long bone growth in newborn rats. Newborn rats were randomized to normoxia (21% O2) or hyperoxia (85% O2) exposure groups within 24 hours of birth, and received riociguat or placebo by once daily intraperitoneal injections during continuous normoxia or hyperoxia exposure for 9 days. In the hyperoxia control group, radial alveolar count, mean linear intercept and vascular density were significantly decreased, the pathological hallmarks of BPD, and these were accompanied by an increased inflammatory response. There was also significantly elevated vascular muscularization of peripheral pulmonary vessels, right ventricular systolic pressure and right ventricular hypertrophy indicating PH. However, administration of riociguat significantly decreased lung inflammation, improved alveolar and vascular development, and decreased PH during hyperoxia by inducing cGMP production. Additionally, riociguat did not affect long bone growth or structure. These data indicate that riociguat is beneficial in preventing hyperoxia-induced lung injury and PH without affecting long bone growth and structure and hence, suggests riociguat may be a potential novel agent for preventing BPD and PH in neonates.