Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
18 result(s) for "Barbarella, M."
Sort by:
Augustus’ solar meridian functioning and the birth of the western leap year
In 12 BCE, Augustus undertook the responsibility for the calendar, which had gradually fallen out of alignment with the true dates of solstices and equinoxes. Augustus’ calendar reform, entailing the introduction of a leap day every four years, coincided with the erection of a grand meridian in the Campus Martius, known in Latin as Horologium Augusti. This device utilized the obelisk of Psamtik II (6° century BCE) as its gnomon that casted its shadow upon a travertine floor inscribed with bronze reference marks. Despite the discovery of the obelisk in 18th century and partial excavation of the floor in 1980, comprehending its geometric intricacies, regarding both dimensions and positioning, remained a challenge due to the complexities of conducting precise geomatic measurements in subterranean environments. Consequently, uncertainties persisted regarding its operational mechanics, particularly regarding whether the marks denoted days or ecliptic degrees. This study presents accurate measurements and statistically rigorous analyses that enable a precise repositioning of the meridian and a careful reconstruction of its geometry. The results suggest that the marks likely denoted specific days of the year, as recalled by Pliny the Elder. This provides support to the hypothesis that the monument functioned as an empirical validation of Augustus’ calendrical reform. In addition, the great accuracy achieved in positioning represents a fundamental aid in the desirable scenario to continue excavations of the meridian.
Is Low Non-Lethal Concentration of Methylmercury Really Safe? A Report on Genotoxicity with Delayed Cell Proliferation
Human exposure to relatively low levels of methylmercury is worrying, especially in terms of its genotoxicity. It is currently unknown as to whether exposure to low levels of mercury (below established limits) is safe. Genotoxicity was already shown in lymphocytes, but studies with cells of the CNS (as the main target organ) are scarce. Moreover, disturbances in the cell cycle and cellular proliferation have previously been observed in neuronal cells, but no data are presently available for glial cells. Interestingly, cells of glial origin accumulate higher concentrations of methylmercury than those of neuronal origin. Thus, the aim of this work was to analyze the possible genotoxicity and alterations in the cell cycle and cell proliferation of a glioma cell line (C6) exposed to a low, non-lethal and non-apoptotic methylmercury concentration. Biochemical (mitochondrial activity) and morphological (integrity of the membrane) assessments confirmed the absence of cell death after exposure to 3 μM methylmercury for 24 hours. Even without promoting cell death, this treatment significantly increased genotoxicity markers (DNA fragmentation, micronuclei, nucleoplasmic bridges and nuclear buds). Changes in the cell cycle profile (increased mitotic index and cell populations in the S and G2/M phases) were observed, suggesting arrest of the cycle. This delay in the cycle was followed, 24 hours after methylmercury withdrawal, by a decrease number of viable cells, reduced cellular confluence and increased doubling time of the culture. Our work demonstrates that exposure to a low sublethal concentration of MeHg considered relatively safe according to current limits promotes genotoxicity and disturbances in the proliferation of cells of glial origin with sustained consequences after methylmercury withdrawal. This fact becomes especially important, since this cellular type accumulates more methylmercury than neurons and displays a vital role protecting the CNS, especially in chronic intoxication with this heavy metal.
QUALITY ASSESSMENT OF UAV PHOTOGRAMMETRIC ARCHAEOLOGICAL SURVEY
The paper reports the results of a photogrammetric survey made using an Unmanned Aerial Vehicle (UAV) in the archaeological site of the Roman Amphitheatre in Avella (Avellino, Italy). The aim of the study is to verify which modality of image acquisition (if only nadiral images or nadiral plus Oblique images), together with the method of Global Positioning Satellite System (GNSS) survey of the Ground Control Points (GCP) is able to produce the better 3D model, in terms of accuracy, in order to extract traditional graphic drawings (plan, elevation and section), suited to the required representation scales (1 : 100 and 1 : 50). The accuracy in georeferencing was evaluated analysing the residues on the GCPs; subsequently, a more detailed analysis of the accuracy of the final 3D model was performed analysing the residuals on the image coordinates, also called re-projection error. The method developed is based on the statistical analysis of the different models, built changing the GCPs survey method and the photogrammetric shots acquired. The results of our analysis show that the photogrammetric survey is more ‘stable’ using only nadiral images and that the nRTK technique allows results comparable to those obtained with static measurements, both in precision and in reliability. Moreover, if the GCPs are measured in nRTK mode, taking into consideration the graphical error, the maximum representation scale is 1 : 100, whereas the use of static technique makes it possible to describe major details, at a scale of 1 : 50.
COMPARISON OF UAVS PERFORMANCE FOR A ROMAN AMPHITHEATRE SURVEY: THE CASE OF AVELLA (ITALY)
In the field of archaeological surveying, remote sensors and especially photogrammetric and laser scanner systems are widely used to create 3D models. The use of photogrammetric surveying with UAVs (Unmanned Aerial Vehicles), combined with Computer Vision algorithms, allows the building of three-dimensional models, characterized by photo-realistic textures. The choice of which method to use mainly depends on the complexity of the investigated site, the accuracy requirements and the available budget and time. The different components of the UAV system determine its characteristics in terms of performance and accuracy, therefore define its quality and the cost too. This study presents an assessment of the accuracy of point clouds derived by two UAV systems, a commercial quadcopter (DJI Phantom 3 Professional), a professional assembled hexacopter, and by a TLS (Terrestrial Laser Scanner) in order to compare photogrammetric and laser scanner data for archaeological applications. In this paper, we present a case study to compare and analyse the metric accuracy of the point clouds and the distribution of the GCPs (Ground Control Points). This accuracy assessment will serve to quantify the uncertainty in the absolute position of the GCPs, identified on the panoramic images in the absence of artificial targets. Executed experiments showed that in tested UAVs, the choice of the GCPs has significant impact on point cloud accuracy. Estimated absolute accuracy of point clouds collected during both test flights was better than 5 cm.
Revisiting Genetic Influence on Mercury Exposure and Intoxication in Humans: A Scoping Review
Human intoxication to mercury is a worldwide health problem. In addition to the type and length of exposure, the genetic background plays an important role in mercury poisoning. However, reviews on the genetic influence in mercury toxicity are scarce and not systematic. Therefore, this review aimed to systematically overview the most recent evidence on the genetic influence (using single nucleotide polymorphisms, SNPs) on human mercury poisoning. Three different databases (PubMed/Medline, Web of Science and Scopus) were searched, and 380 studies were found that were published from 2015 to 2022. After applying inclusion/exclusion criteria, 29 studies were selected and data on characteristics (year, country, profile of participants) and results (mercury biomarkers and quantitation, SNPs, main findings) were extracted and analyzed. The largest number of studies was performed in Brazil, mainly involving traditional populations of the Tapajós River basin. Most studies evaluated the influence of the SNPs related to genes of the glutathione system (GST, GPx, etc.), the ATP-binding cassette transporters and the metallothionein proteins. The recent findings regarding other SNPs, such as those of apolipoprotein E and brain-derived neurotrophic factor genes, are also highlighted. The importance of the exposure level is discussed considering the possible biphasic behavior of the genetic modulation phenomena that could explain some SNP associations. Overall, recommendations are provided for future studies based on the analysis obtained in this scoping review.
Antidepressant and Antiaging Effects of Açaí (Euterpe oleracea Mart.) in Mice
Depression is a mental disorder that affects 300 million people of all ages worldwide, but fewer than half of those with the condition receive adequate treatment. In addition, the high pharmacological refractoriness (affecting 30%-50% of patients) and toxicity of some classical antidepressants support the pursuit of new therapies. People with this condition show depressed mood, loss of pleasure, high levels of oxidative stress, and accelerated biological aging (decreased telomere length and expression of the telomerase reverse transcriptase (TERT), the enzyme responsible for telomere maintenance). Because of the close relationship between depression and oxidative stress, nutraceuticals with antioxidant properties are excellent candidates for therapy. This study represents the first investigation of the possible antidepressant and antiaging effects of commercial samples of clarified açaí (Euterpe oleracea) juice (EO). This fruit is rich in antioxidants and widely consumed. In this study, mice were treated with saline or EO (10 μL/g, oral) for 4 days and then with saline or lipopolysaccharide (0.5 mg/kg, i.p.) to induce depressive-like behavior. Only four doses of EO were enough to abolish the despair-like and anhedonia behaviors and alterations observed in electromyographic measurements. The antidepression effect of EO was similar to that of imipramine and associated with antioxidant and antiaging effects (preventing lipid peroxidation and increasing TERT mRNA expression, respectively) in three major brain regions involved in depression (hippocampus, striatum, and prefrontal cortex). Additionally, EO significantly protected hippocampal cells, preventing neuronal loss associated with the depressive-like state and nitrite level increases (an indirect marker of nitric oxide production). Moreover, EO alone significantly increased TERT mRNA expression, revealing for the first time a potent antiaging action in the brain that suggests neuroprotection against long-term age-related consequences.
In the Heart of the Amazon: Noncommunicable Diseases and Apolipoprotein E4 Genotype in the Riverine Population
The Amazon River basin is the largest tropical forest in the world. Most of the Amazon belongs to Brazil, a developing country that currently faces huge challenges related to the consolidation of its universal healthcare system. Noncommunicable diseases (NCDs) are the leading cause of death in Brazil, accounting for 74% of all deaths, and NCDs are probably underestimated in Amazonian population because of their geographical isolation and the precariousness of riverine communities. Important risk factors, such as genetic susceptibility, remain undetermined in the riverine population. This study performed fasting blood sugar (FBS) and blood pressure measurements and investigated the presence of the ε4 allele of apolipoprotein E (APOE4) to determine the prevalence of diabetes, hypertension and the genetic risk of NCDs. FBS and APOE4 were measured in blood samples from 763 participants using spectrometry and real-time PCR; 67.5% showed altered measurements, and 57.9% had never been diagnosed or treated. Altered FBS was found in 28.3% of the participants, hypertension in 57.6% and APOE4 in 32.0%. The health profile of the riverine population appears to differ from that of urban population in the Amazon. Additional risk factors for NCDs, such as environmental contamination and nutritional transition, may contribute more than increased genetic susceptibility to the prevalence of altered FBS and hypertension. Our results will help guide the development of preventive strategies and governmental actions for more effective management of NCDs in the Amazon area.
Effects of saltwater intrusion on pinewood vegetation using satellite ASTER data: the case study of Ravenna (Italy)
The San Vitale pinewood (Ravenna, Italy) is part of the remaining wooded areas within the southeastern Po Valley. Several studies demonstrated a widespread saltwater intrusion in the phreatic aquifer caused by natural and human factors in this area as the whole complex coastal system. Groundwater salinization affects soils and vegetation, which takes up water from the shallow aquifer. Changes in groundwater salinity induce variations of the leaf properties and vegetation cover, recognizable by satellite sensors as a response to different spectral bands. A procedure to identify stressed areas from satellite remote sensing data, reducing the expensive and time-consuming ground monitoring campaign, was developed. Multispectral Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) data, acquired between May 2005 and August 2005, were used to calculate Normalized Difference Vegetation Index (NDVI). Within the same vegetation type (thermophilic deciduous forest), the areas with the higher vegetation index were taken as reference to identify the most stressed areas using a statistical approach. To confirm the findings, a comparison was conducted using contemporary groundwater salinity data. The results were coherent in the areas with highest and lowest average NDVI values. Instead, to better understand the behavior of the intermediate areas, other parameters influencing vegetation (meteorological data, water table depth, and tree density) were added for the interpretation of the results.
AUGUSTO'S SUNDIAL: IMAGE-BASED MODELING FOR REVERSE ENGENEERING PURPOSES
A photogrammetric survey of a unique archaeological site is reported in this paper. The survey was performed using both a panoramic image-based solution and by classical procedure. The panoramic image-based solution was carried out employing a commercial solution: the Trimble V10 Imaging Rover (IR). Such instrument is an integrated cameras system that captures 360 degrees digital panoramas, composed of 12 images, with a single push. The direct comparison of the point clouds obtained with traditional photogrammetric procedure and V10 stations, using the same GCP coordinates has been carried out in Cloud Compare, open source software that can provide the comparison between two point clouds supplied by all the main statistical data. The site is a portion of the dial plate of the “Horologium Augusti” inaugurated in 9 B.C.E. in the area of Campo Marzio and still present intact in the same position, in a cellar of a building in Rome, around 7 meter below the present ground level.
SATELLITE AND UNMANNED AERIAL VEHICLE DATA FOR THE CLASSIFICATION OF SAND DUNE VEGETATION
Within coastal systems, sand dunes are the only natural barriers able to counteract erosive processes. Since their equilibrium is often threatened by human activities and high vulnerability of the coastal environment, dunes require increasing attention and specific monitoring. Located between the mainland and the sea, dunes are unique residue habitats for some plant and animal species. In particular, their vegetation is important because it has a consolidation function and promotes the vertical dune accretion. A georeferenced vegetation classification can be useful to define the advancements or erosion stage of the dune, usually based only on the geometric reconstruction. The proposed study aims to compare the classifications performed with some combinations of two of the last generation sensors and traditional image processing techniques. High spectral resolution satellite image (WorldView-2) and a multispectral orthophoto, obtained from data acquired by an unmanned aerial vehicle, were used. Objects and pixel algorithms were applied and the results were compared by a statistical test. Using the same bands, the findings show that both data are suitable for monitoring the evolutionary dune status. Specifically, the WorldView-2 pixel-based classification and UAV object-based classification provide the same accurate results.