Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
102 result(s) for "Barbato, Mario"
Sort by:
Convergent genomic signatures of domestication in sheep and goats
The evolutionary basis of domestication has been a longstanding question and its genetic architecture is becoming more tractable as more domestic species become genome-enabled. Before becoming established worldwide, sheep and goats were domesticated in the fertile crescent 10,500 years before present (YBP) where their wild relatives remain. Here we sequence the genomes of wild Asiatic mouflon and Bezoar ibex in the sheep and goat domestication center and compare their genomes with that of domestics from local, traditional, and improved breeds. Among the genomic regions carrying selective sweeps differentiating domestic breeds from wild populations, which are associated among others to genes involved in nervous system, immunity and productivity traits, 20 are common to Capra and Ovis . The patterns of selection vary between species, suggesting that while common targets of selection related to domestication and improvement exist, different solutions have arisen to achieve similar phenotypic end-points within these closely related livestock species. The sheep and goat were domesticated ~10,500 years ago in the same region of the Middle-East. Here, Alberto et al compare the genomes of wild Asiatic mouflon and Bezoar ibex with that of domestics from local, traditional and improved breeds and find common targets of selection related to domestication and improvement in sheep and goats.
A Preliminary Study to Classify Corn Silage for High or Low Mycotoxin Contamination by Using near Infrared Spectroscopy
Mycotoxins should be monitored in order to properly evaluate corn silage safety quality. In the present study, corn silage samples (n = 115) were collected in a survey, characterized for concentrations of mycotoxins, and scanned by a NIR spectrometer. Random Forest classification models for NIR calibration were developed by applying different cut-offs to classify samples for concentration (i.e., μg/kg dry matter) or count (i.e., n) of (i) total detectable mycotoxins; (ii) regulated and emerging Fusarium toxins; (iii) emerging Fusarium toxins; (iv) Fumonisins and their metabolites; and (v) Penicillium toxins. An over- and under-sampling re-balancing technique was applied and performed 100 times. The best predictive model for total sum and count (i.e., accuracy mean ± standard deviation) was obtained by applying cut-offs of 10,000 µg/kg DM (i.e., 96.0 ± 2.7%) or 34 (i.e., 97.1 ± 1.8%), respectively. Regulated and emerging Fusarium mycotoxins achieved accuracies slightly less than 90%. For the Penicillium mycotoxin contamination category, an accuracy of 95.1 ± 2.8% was obtained by using a cut-off limit of 350 µg/kg DM as a total sum or 98.6 ± 1.3% for a cut-off limit of five as mycotoxin count. In conclusion, this work was a preliminary study to discriminate corn silage for high or low mycotoxin contamination by using NIR spectroscopy.
Genomic signatures of adaptive introgression from European mouflon into domestic sheep
Mouflon ( Ovis aries musimon ) became extinct from mainland Europe after the Neolithic, but remnant populations from the Mediterranean islands of Corsica and Sardinia have been used for reintroductions across Europe since the 19 th -century. Mouflon x sheep hybrids are larger-bodied than mouflon, potentially showing increased male reproductive success, but little is known about genomic levels of admixture, or about the adaptive significance of introgression between resident mouflon and local sheep breeds. Here we analysed Ovine medium-density SNP array genotypes of 92 mouflon from six geographic regions, along with data from 330 individuals of 16 domestic sheep breeds. We found lower levels of genetic diversity in mouflon than in domestic sheep, consistent with past bottlenecks in mouflon. Introgression signals were bidirectional and affected most mouflon and sheep populations, being strongest in one Sardinian mouflon population. Developing and using a novel approach to identify chromosomal regions with consistent introgression signals, we infer adaptive introgression from mouflon to domestic sheep related to immunity mechanisms, but not in the opposite direction. Further, we infer that Soay and Sarda sheep carry introgressed mouflon alleles involved in bitter taste perception and/or innate immunity. Our results illustrate the potential for adaptive introgression even among recently diverged populations.
Genomic analysis of the domestication and post-Spanish conquest evolution of the llama and alpaca
Background Despite their regional economic importance and being increasingly reared globally, the origins and evolution of the llama and alpaca remain poorly understood. Here we report reference genomes for the llama, and for the guanaco and vicuña (their putative wild progenitors), compare these with the published alpaca genome, and resequence seven individuals of all four species to better understand domestication and introgression between the llama and alpaca. Results Phylogenomic analysis confirms that the llama was domesticated from the guanaco and the alpaca from the vicuña. Introgression was much higher in the alpaca genome (36%) than the llama (5%) and could be dated close to the time of the Spanish conquest, approximately 500 years ago. Introgression patterns are at their most variable on the X-chromosome of the alpaca, featuring 53 genes known to have deleterious X-linked phenotypes in humans. Strong genome-wide introgression signatures include olfactory receptor complexes into both species, hypertension resistance into alpaca, and fleece/fiber traits into llama. Genomic signatures of domestication in the llama include male reproductive traits, while in alpaca feature fleece characteristics, olfaction-related and hypoxia adaptation traits. Expression analysis of the introgressed region that is syntenic to human HSA4q21, a gene cluster previously associated with hypertension in humans under hypoxic conditions, shows a previously undocumented role for PRDM8 downregulation as a potential transcriptional regulation mechanism, analogous to that previously reported at high altitude for hypoxia-inducible factor 1α. Conclusions The unprecedented introgression signatures within both domestic camelid genomes may reflect post-conquest changes in agriculture and the breakdown of traditional management practices.
Demography and rapid local adaptation shape Creole cattle genome diversity in the tropics
The introduction of Iberian cattle in the Americas after Columbus’ arrival imposed high selection pressures on a limited number of animals over a brief period of time. Knowledge of the genomic regions selected during this process may help in enhancing climatic resilience and sustainable animal production. We first determined taurine and indicine contributions to the genomic structure of modern Creole cattle. Second, we inferred their demographic history using approximate Bayesian computation (ABC), linkage disequilibrium (LD) and Ne Slope (NeS) analysis. Third, we performed whole genome scans for selection signatures based on cross‐population extended haplotype homozygosity (XP‐EHH) and population differentiation (FST) to disentangle the genetic mechanisms involved in adaptation and phenotypic change by a rapid and major environmental transition. To tackle these questions, we combined SNP array data (~54,000 SNPs) in Creole breeds with their modern putative Iberian ancestors. Reconstruction of the population history of Creoles from the end of the 15th century indicated a major demographic expansion until the introduction of zebu and commercial breeds into the Americas ~180 years ago, coinciding with a drastic Ne contraction. NeS analysis provided insights into short‐term complexity in population change and depicted a decrease/expansion episode at the end of the ABC‐inferred expansion, as well as several additional fluctuations in Ne with the attainment of the current small Ne only towards the end of the 20th century. Selection signatures for tropical adaptation pinpointed the thermoregulatory slick hair coat region, identifying a new candidate gene (GDNF), as well as novel candidate regions involved in immune function, behavioural processes, iron metabolism and adaptation to new feeding conditions. The outcomes from this study will help in future‐proofing farm animal genetic resources (FAnGR) by providing molecular tools that allow selection for improved cattle performance, resilience and welfare under climate change.
Effects of dietary inclusion of hydrolysed feather meal on faecal fermentation products in adult female dogs
There is growing interest in alternative protein sources to promote a more circular economy within agri-food systems. This study evaluated the impact of replacing 7% of poultry meal (PM) with hydrolysed feather meal (HFM) in canine diet on faecal characteristics. Six adult female English Setter dogs, matched for age, body weight, and body condition score (BCS), were divided into two groups and tested with two diets (PM vs. HFM) in a cross-over design. The study included a 7-d adaptation period, followed by a 45-d total faecal collection. A 30-d washout period was used. Digestive fermentation by-products were analysed by using gas and liquid chromatography. Data were analysed using a generalised linear mixed model (GLMM), with diet, time and their interaction as fixed effects, and the experimental phase as a random effect. Faecal scores for both groups remained within the range of 2–3, which is considered ‘ideal’. Dogs fed the HFM diet showed significantly higher (p < 0.001) faecal concentrations of acetate and isobutyrate, and significantly lower (p < 0.01) levels of propionate and butyrate compared to the PM diet. Furthermore, dogs fed HFM diet exhibited significantly increased (p < 0.001) concentrations of putrescine and cadaverine and significantly decreased (p < 0.001) levels of spermine. The profile of short-chain fatty acids (SCFAs) and biogenic amines differed from that those reported in dogs with inflammatory enteropathies, confirming the maintenance of gastrointestinal health throughout the study. These results suggest that HFM is a promising alternative protein source for dog food formulations, contributing to the sustainable utilisation of animal by-products.
On the origin of European sheep as revealed by the diversity of the Balkan breeds and by optimizing population-genetic analysis tools
Background In the Neolithic, domestic sheep migrated into Europe and subsequently spread in westerly and northwesterly directions. Reconstruction of these migrations and subsequent genetic events requires a more detailed characterization of the current phylogeographic differentiation. Results We collected 50 K single nucleotide polymorphism (SNP) profiles of Balkan sheep that are currently found near the major Neolithic point of entry into Europe, and combined these data with published genotypes from southwest-Asian, Mediterranean, central-European and north-European sheep and from Asian and European mouflons. We detected clines, ancestral components and admixture by using variants of common analysis tools: geography-informative supervised principal component analysis (PCA), breed-specific admixture analysis, across-breed f 4 profiles and phylogenetic analysis of regional pools of breeds. The regional Balkan sheep populations exhibit considerable genetic overlap, but are clearly distinct from the breeds in surrounding regions. The Asian mouflon did not influence the differentiation of the European domestic sheep and is only distantly related to present-day sheep, including those from Iran where the mouflons were sampled. We demonstrate the occurrence, from southeast to northwest Europe, of a continuously increasing ancestral component of up to 20% contributed by the European mouflon, which is assumed to descend from the original Neolithic domesticates. The overall patterns indicate that the Balkan region and Italy served as post-domestication migration hubs, from which wool sheep reached Spain and north Italy with subsequent migrations northwards. The documented dispersal of Tarentine wool sheep during the Roman period may have been part of this process. Our results also reproduce the documented 18th century admixture of Spanish Merino sheep into several central-European breeds. Conclusions Our results contribute to a better understanding of the events that have created the present diversity pattern, which is relevant for the management of the genetic resources represented by the European sheep population.
Revised phylogeny of mouflon based on expanded sampling of mitogenomes
Mouflons are flagship species of the Mediterranean islands where they persist. Once thought to be the remnants of a European wild sheep population, archaeology suggests they were introduced by humans to the islands of Cyprus in the Early Neolithic (~10,000 years ago) and later to Corsica and Sardinia. Their status as truly wild animals remains a subject of debate. To investigate the phylogenetic relationship between these island populations and other domestic and wild sheep from the Mediterranean region, we sequenced 50 mitogenomes of mouflons from Sardinia and Corsica, and modern and ancient Sardinian domestic sheep. A total of 68 additional publicly available mitogenomes were included in the comparative analysis and used to reconstruct the phylogeny of sheep and its closest wild relative, the mouflon ( Ovis gmelini ). Our study analyzed the evolutionary relationships within the C-E-X and haplogroup B clusters, showing that: a) Cyprus mouflons are more related to Anatolian and Iranian mouflons belonging to the wild haplogroup X, which seems to be basal to the domestic C and E haplogroups; b) Corsican and Sardinian mouflon arise from basal lineages associated with the early European expansion of domestic sheep. These results highlight the phylogenetic distinctiveness of the mouflon populations from the Mediterranean islands, suggesting a revision of their systematic classification and an update of the nomenclature for Sardinian and Corsican mouflons from the current status of subspecies of domestic sheep ( Ovis aries musimon ) to subspecies of their wild relatives ( Ovis gmelini musimon ) which would facilitate conservation efforts.
Population structure and genetic diversity of 25 Russian sheep breeds based on whole-genome genotyping
Background Russia has a diverse variety of native and locally developed sheep breeds with coarse, fine, and semi-fine wool, which inhabit different climate zones and landscapes that range from hot deserts to harsh northern areas. To date, no genome-wide information has been used to investigate the history and genetic characteristics of the extant local Russian sheep populations. To infer the population structure and genome-wide diversity of Russian sheep, 25 local breeds were genotyped with the OvineSNP50 BeadChip. Furthermore, to evaluate admixture contributions from foreign breeds in Russian sheep, a set of 58 worldwide breeds from publicly available genotypes was added to our data. Results We recorded similar observed heterozygosity (0.354–0.395) and allelic richness (1.890–1.955) levels across the analyzed breeds and they are comparable with those observed in the worldwide breeds. Recent effective population sizes estimated from linkage disequilibrium five generations ago ranged from 65 to 543. Multi-dimensional scaling, admixture, and neighbor-net analyses consistently identified a two-step subdivision of the Russian local sheep breeds. A first split clustered the Russian sheep populations according to their wool type (fine wool, semi-fine wool and coarse wool). The Dagestan Mountain and Baikal fine-fleeced breeds differ from the other Merino-derived local breeds. The semi-fine wool cluster combined a breed of Romanian origin, Tsigai, with its derivative Altai Mountain, the two Romney-introgressed breeds Kuibyshev and North Caucasian, and the Lincoln-introgressed Russian longhaired breed. The coarse-wool group comprised the Nordic short-tailed Romanov, the long-fat-tailed outlier Kuchugur and two clusters of fat-tailed sheep: the Caucasian Mountain breeds and the Buubei, Karakul, Edilbai, Kalmyk and Tuva breeds. The Russian fat-tailed breeds shared co-ancestry with sheep from China and Southwestern Asia (Iran). Conclusions In this study, we derived the genetic characteristics of the major Russian local sheep breeds, which are moderately diverse and have a strong population structure. Pooling our data with a worldwide genotyping set gave deeper insight into the history and origin of the Russian sheep populations.
A mixture of quebracho and chestnut tannins drives butyrate-producing bacteria populations shift in the gut microbiota of weaned piglets
Weaning is a critical period for piglets, in which unbalanced gut microbiota and/or pathogen colonisation can contribute to diseases that interfere with animal performance. Tannins are natural compounds that could be used as functional ingredients to improve gut health in pig farming thanks to their antibacterial, antioxidant, and antidiarrhoeal properties. In this study, a mixture of quebracho and chestnut tannins (1.25%) was evaluated for its efficacy in reducing the negative weaning effects on piglet growth. Microbiota composition was assessed by Illumina MiSeq 16S rRNA gene sequencing of DNA extracted from stools at the end of the trial. Sequence analysis revealed an increase in the genera Shuttleworthia , Pseudobutyrivibrio , Peptococcus , Anaerostipes , and Solobacterium in the tannin-supplemented group. Conversely, this dietary intervention reduced the abundance of the genera Syntrophococcus , Atopobium , Mitsuokella , Sharpea , and Prevotella . The populations of butyrate-producing bacteria were modulated by tannin, and higher butyrate concentrations in stools were detected in the tannin-fed pigs. Co-occurrence analysis revealed that the operational taxonomic units (OTUs) belonging to the families Veillonellaceae , Lachnospiraceae , and Coriobacteriaceae occupied the central part of the network in both the control and the tannin-fed animals. Instead, in the tannin group, the OTUs belonging to the families Acidaminococcaceae , Alcaligenaceae , and Spirochaetaceae characterised its network, whereas Family XIII Incertae Sedis occupied a more central position than in the control group. Conversely, the presence of Desulfovibrionaceae characterised the network of the control group, and this family was not present in the network of the tannin group. Moreover, the prediction of metabolic pathways revealed that the gut microbiome of the tannin group possessed an enhanced potential for carbohydrate transport and metabolism, as well as a lower abundance of pathways related to cell wall/membrane/envelope biogenesis and inorganic ion transport. In conclusion, the tested tannins seem to modulate the gut microbiota, favouring groups of butyrate-producing bacteria.