Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
386 result(s) for "Barnes, Ryan"
Sort by:
Telomeric 8-oxo-guanine drives rapid premature senescence in the absence of telomere shortening
Oxidative stress is a primary cause of cellular senescence and contributes to the etiology of numerous human diseases. Oxidative damage to telomeric DNA has been proposed to cause premature senescence by accelerating telomere shortening. Here, we tested this model directly using a precision chemoptogenetic tool to produce the common lesion 8-oxo-guanine (8oxoG) exclusively at telomeres in human fibroblasts and epithelial cells. A single induction of telomeric 8oxoG is sufficient to trigger multiple hallmarks of p53-dependent senescence. Telomeric 8oxoG activates ATM and ATR signaling, and enriches for markers of telomere dysfunction in replicating, but not quiescent cells. Acute 8oxoG production fails to shorten telomeres, but rather generates fragile sites and mitotic DNA synthesis at telomeres, indicative of impaired replication. Based on our results, we propose that oxidative stress promotes rapid senescence by producing oxidative base lesions that drive replication-dependent telomere fragility and dysfunction in the absence of shortening and shelterin loss. This study uncovers a new mechanism linking oxidative stress to telomere-driven senescence. A common oxidative lesion at telomeres causes rapid premature cellular aging by inducing telomere fragility, rather than telomere shortening.
Global and transcription-coupled repair of 8-oxoG is initiated by nucleotide excision repair proteins
UV-DDB, consisting of subunits DDB1 and DDB2, recognizes UV-induced photoproducts during global genome nucleotide excision repair (GG-NER). We recently demonstrated a noncanonical role of UV-DDB in stimulating base excision repair (BER) which raised several questions about the timing of UV-DDB arrival at 8-oxoguanine (8-oxoG), and the dependency of UV-DDB on the recruitment of downstream BER and NER proteins. Using two different approaches to introduce 8-oxoG in cells, we show that DDB2 is recruited to 8-oxoG immediately after damage and colocalizes with 8-oxoG glycosylase (OGG1) at sites of repair. 8-oxoG removal and OGG1 recruitment is significantly reduced in the absence of DDB2. NER proteins, XPA and XPC, also accumulate at 8-oxoG. While XPC recruitment is dependent on DDB2, XPA recruitment is DDB2-independent and transcription-coupled. Finally, DDB2 accumulation at 8-oxoG induces local chromatin unfolding. We propose that DDB2-mediated chromatin decompaction facilitates the recruitment of downstream BER proteins to 8-oxoG lesions. Nucleotide excision repair proteins are involved in the repair of UV-induced DNA damage. Here, the authors show that NER proteins, DDB2, XPC, and XPA play a vital role in the 8-oxoguanine repair by coordinating with base excision repair protein OGG1.
OGG1 and MUTYH repair activities promote telomeric 8-oxoguanine induced senescence in human fibroblasts
Telomeres are hypersensitive to the formation of the common oxidative lesion 8-oxoguanine (8oxoG), which impacts telomere stability and function. OGG1 and MUTYH glycosylases initiate base excision repair (BER) to remove 8oxoG or prevent mutation. Here, we show OGG1 loss or inhibition, or MUTYH loss, partially rescues telomeric 8oxoG-induced premature senescence and associated proinflammatory responses, while loss of both glycosylases causes a near complete rescue in human fibroblasts. Glycosylase deficiency also suppresses 8oxoG-induced telomere fragility and dysfunction, indicating that downstream single-stranded break (SSB) repair intermediates impair telomere replication. Preventing BER initiation suppresses PARylation and confers resistance to the synergistic effects of PARP inhibitors on 8oxoG-induced senescence. However, OGG1 activity is essential for preserving cell growth after chronic telomeric 8oxoG formation, whereas MUTYH promotes senescence to prevent chromosomal instability from unrepaired damage. Our studies reveal that inefficient completion of 8oxoG BER at telomeres triggers cellular senescence via SSB intermediates which disrupt telomere function. Telomeres are prone to oxidative damage, particularly the formation of the common lesion 8-oxoguanine. This study shows that the processing of 8-oxoguanine at telomeres by the DNA repair enzymes OGG1 and MUTYH glycosylases contributes to cellular senescence.
Measuring success: A comparison of ultrasound and landmark guidance for knee arthrocentesis in a cadaver model
Knee arthrocentesis can be performed by landmark (LM) or ultrasound (US) guidance. The goal of performing knee arthrocentesis is to obtain synovial fluid, however, it is also important to consider the number of attempts required and accidental bone contacts that occur. This study evaluates procedural success without bone contact in knee arthrocentesis and compares both LM and US guided techniques in a cadaver model. This was a randomized crossover study comparing US vs LM guidance for arthrocentesis in a single academic center. Volunteers were randomized to perform both LM and US guided knee arthrocentesis on cadavers. The primary outcome was procedural success, defined as first attempt aspiration of synovial fluid without bone contact. Secondary outcomes included number of attempts, number of bone contacts, time to aspiration, and confidence. Sixty-one participants completed the study with a total of 122 procedures performed. Procedural success without bone contact was greater in the US group (84% vs 64% p = 0.02). Time to aspiration was longer for US (38.75 s vs 25.54 s p = 0.004). Participants were more confident with US compared to LM both before the procedure on a Visual Analog Scale from 1 to 100 (29 vs 21 p = 0.03) as well as after the procedure (83 vs 69 p = 0.0001). Participants had a greater median increase in confidence with US following training (44 vs 26 p = 0.01). Study participants had greater procedural success without bone contact when US guidance was used. The increase in confidence following training was greater for US guidance than the LM method. Use of US guidance may offer a benefit by allowing for better needle control and avoidance of sensitive structures for clinicians performing knee arthrocentesis.
Dehydration entropy drives liquid-liquid phase separation by molecular crowding
Complex coacervation driven liquid-liquid phase separation (LLPS) of biopolymers has been attracting attention as a novel phase in living cells. Studies of LLPS in this context are typically of proteins harboring chemical and structural complexity, leaving unclear which properties are fundamental to complex coacervation versus protein-specific. This study focuses on the role of polyethylene glycol (PEG)—a widely used molecular crowder—in LLPS. Significantly, entropy-driven LLPS is recapitulated with charged polymers lacking hydrophobicity and sequence complexity, and its propensity dramatically enhanced by PEG. Experimental and field-theoretic simulation results are consistent with PEG driving LLPS by dehydration of polymers, and show that PEG exerts its effect without partitioning into the dense coacervate phase. It is then up to biology to impose additional variations of functional significance to the LLPS of biological systems. Liquid-liquid phase separation occurs in cells and can be induced in artificial systems, but the mechanism of the effect of molecular crowders is unclear. Here dehydration entropy-driven phase separation of model charged polymers lacking any chemical complexity or hydrophobicity is shown to be enhanced by polyethylene glycol.
Optic nerve sheath diameter in severe preeclampsia with neurologic features versus controls
Background Optic nerve sheath diameters (ONSD) have been validated as an accurate screening tool to detect elevated intracranial pressure in hypertensive encephalopathy. The neurologic manifestations of preeclampsia and/or eclampsia mimic those of hypertensive encephalopathy. This study was performed to assess the incidence of elevated optic nerve sheath diameters of patients with severe preeclampsia and neurologic criteria compared to non-preeclamptic patients. The secondary objective was to determine baseline optic nerve sheath diameters in patients with severe preeclampsia without neurologic criteria and preeclampsia without severe features. Methods Single site cohort study including 62 pregnant women 18 years or older and 20 weeks or further gestation. Patients with preeclampsia without severe features, preeclampsia with severe features by non-neurologic criteria, preeclampsia with severe features with neurologic criteria, and patients without preeclampsia were enrolled via convenience sampling. One blinded reviewer measured sheath diameters; baseline demographics and pregnancy data were collected by chart review. Statistical analysis was completed with STATA/IC 16. Categorical variables were compared by the χ 2  test. Continuous variables were presented as mean ± standard deviation, and discrete variables were presented as medians and compared by Kruskal–Wallis testing. Normality was confirmed by Shapiro–Wilk testing. Linear and logistic regression were used to test the association between the preeclampsia groups and optic nerve sheath diameters. Models were presented as unadjusted and adjusted for BMI, gestation, hypertension, diabetes, parity, and gravidity. Results The incidence of optic nerve sheath diameters > 5.8 mm was 43.8% in the severe preeclampsia with neurologic features cohort, and 42.1% in the control cohort, with a relative risk of 1.04. Patients with severe preeclampsia without neurologic features had sheath diameters of 5.75 mm ± 1.09 mm; non-severe preeclampsia patients had sheath diameters of 5.54 mm ± 1.26 mm. Conclusions We did not find a significant elevated optic nerve sheath diameter relative risk between severe preeclampsia patients with neurologic features and non-preeclampsia control patients. This is the first study to assess a North American population utilizing ACOG criteria for severe and non-severe preeclampsia, with severe cohorts additionally stratified by neurologic criteria.
Telomere Fragility and MiDAS: Managing the Gaps at the End of the Road
Telomeres present inherent difficulties to the DNA replication machinery due to their repetitive sequence content, formation of non-B DNA secondary structures, and the presence of the nucleo-protein t-loop. Especially in cancer cells, telomeres are hot spots for replication stress, which can result in a visible phenotype in metaphase cells termed “telomere fragility”. A mechanism cells employ to mitigate replication stress, including at telomeres, is DNA synthesis in mitosis (MiDAS). While these phenomena are both observed in mitotic cells, the relationship between them is poorly understood; however, a common link is DNA replication stress. In this review, we will summarize what is known to regulate telomere fragility and telomere MiDAS, paying special attention to the proteins which play a role in these telomere phenotypes.
Glenohumeral Hydrodistension for Postoperative Stiffness After Arthroscopic Primary Rotator Cuff Repair
Background: Postoperative stiffness is a known complication after rotator cuff repair (RCR). Glenohumeral hydrodistension (GH) has been a treatment modality for shoulder pathology but has not been used to treat postoperative stiffness after RCR. Purpose/Hypothesis: The purpose of this study was to identify the risk factors for postoperative stiffness after RCR and review outcomes after treatment with GH. Our hypotheses were that stiffness would be associated with diabetes and hyperlipidemia and correlated with the tendons involved and that patients with stiffness who underwent GH would have significant improvement in range of motion (ROM). Study Design: Case series; Level of evidence, 4. Methods: Included were 388 shoulders of patients who underwent primary RCR by a single surgeon between 2015 and 2019. Shoulders with revision RCRs were excluded. Patient characteristics, medical comorbidities, and perioperative details were collected. A total of 40 shoulders with postoperative stiffness (10.3%) received GH injectate of a 21-mL mixture (15 mL of sterile water, 5 mL of 0.5% ropivacaine, and 1 mL of triamcinolone [10 mg/mL]). The primary outcome measure was ROM in forward flexion, internal rotation, external rotation, and abduction. Statistical tests were performed using analysis of variance. Results: Patients with diabetes had significantly decreased internal rotation at final follow-up after RCR as compared with patients without diabetes. GH to treat stiffness was performed most commonly between 1 and 4 months after RCR (60%), and patients who received GH saw statistically significant improvements in forward flexion, external rotation, and abduction after the procedure. Patients with hyperlipidemia had the most benefit after GH. Among those undergoing concomitant procedures, significantly more patients who had open subpectoral biceps tenodesis underwent GH. Patients who underwent subscapularis repair or concomitant subacromial decompression had significant improvement in ROM after GH. Only 1 patient who received GH underwent secondary surgery for resistant postoperative stiffness. Conclusion: Patients with diabetes had increased stiffness. Patients with a history of hyperlipidemia or concomitant open subpectoral biceps tenodesis were more likely to undergo GH for postoperative stiffness. Patients who underwent subscapularis repair demonstrated the most improvement in ROM after GH. After primary RCR, GH can increase ROM and is a useful adjunct for patients with stiffness to limit secondary surgery.
Recurrent Hemarthrosis following Resections of Benign Bone Tumors: A Case Report of Two Pediatric Cases
Introduction/Cases. Two pediatric patients presenting with benign bone tumors of the distal femur at the level of the suprapatellar fat pad developed late onset recurrent knee hemarthrosis following surgical treatment of the lesions. A sinus tract from the intramedullary bone to the knee capsule was discovered in both patients during surgical exploration. Resection of the sinus tract and full closure of the knee capsule resulted in no further recurrence. Conclusion. Postoperative knee effusions in patients following resection near the distal femur could represent hemarthrosis that require additional workup and treatment. Resection of the sinus tract successfully treats the hemarthrosis.