Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
948 result(s) for "Barnett, Chris"
Sort by:
Chemical Recycling of Consumer-Grade Black Plastic into Electrically Conductive Carbon Nanotubes
The global plastics crisis has recently focused scientists’ attention on finding technical solutions for the ever-increasing oversupply of plastic waste. Black plastic is one of the greatest contributors to landfill waste, because it cannot be sorted using industrial practices based on optical reflection. However, it can be readily upcycled into carbon nanotubes (CNTs) using a novel liquid injection reactor (LIR) chemical vapor deposition (CVD) method. In this work, CNTs were formed using black and white polystyrene plastics to demonstrate that off-the-shelf materials can be used as feedstock for growth of CNTs. Scanning electron microscopy analysis suggests the CNTs from plastic sources improve diameter distribution homogeneity, with slightly increased diameters compared with control samples. Slight improvements in quality, as determined by Raman spectroscopy of the D and G peaks, suggest that plastics could lead to increased quality of CNTs. A small device was constructed as a demonstrator model to increase impact and public engagement.
Size dependent conduction characteristics of catalyst-multi-walled carbon nanotube junction
Multi-walled carbon nanotubes (MWCNTs) grown by chemical vapor deposition retain the residual catalyst particles from which the growth occurred, which are considered a detriment to MWCNTs’ performance, especially electrical conductivity. The first direct measurements have been made of the electrical transport through the catalyst cap into the MWCNT using nanoscale 2-point-probe to determine the effects of the catalyst particle’s size and the diameter ratio with its associated MWCNT on the electrical transport through the catalyst cap as compared to the inherent conductivity of the MWCNT. The MWCNT diameter is independent of the catalyst size, but the ratio of the catalyst cap diameter to MWCNT diameter ( D C / D NT ) determines the conduction mechanism. Where D C / D NT is greater than 1 the resulting I – V curve is near ohmic, and the conduction through the catalyst (R C+NT ) approaches that of the MWCNT ( R NT ); however, when the D C / D NT  < 1 the I – V curves shift to rectifying and R C+NT  >  >  R NT . The experimental results are discussed in relation to current crowding at the interface between catalyst and nanotube due to an increased electric field. Graphic abstract
Genetic regulation of RNA splicing in human pancreatic islets
Background Non-coding genetic variants that influence gene transcription in pancreatic islets play a major role in the susceptibility to type 2 diabetes (T2D), and likely also contribute to type 1 diabetes (T1D) risk. For many loci, however, the mechanisms through which non-coding variants influence diabetes susceptibility are unknown. Results We examine splicing QTLs (sQTLs) in pancreatic islets from 399 human donors and observe that common genetic variation has a widespread influence on the splicing of genes with established roles in islet biology and diabetes. In parallel, we profile expression QTLs (eQTLs) and use transcriptome-wide association as well as genetic co-localization studies to assign islet sQTLs or eQTLs to T2D and T1D susceptibility signals, many of which lack candidate effector genes. This analysis reveals biologically plausible mechanisms, including the association of T2D with an sQTL that creates a nonsense isoform in ERO1B , a regulator of ER-stress and proinsulin biosynthesis. The expanded list of T2D risk effector genes reveals overrepresented pathways, including regulators of G-protein-mediated cAMP production. The analysis of sQTLs also reveals candidate effector genes for T1D susceptibility such as DCLRE1B , a senescence regulator, and lncRNA MEG3 . Conclusions These data expose widespread effects of common genetic variants on RNA splicing in pancreatic islets. The results support a role for splicing variation in diabetes susceptibility, and offer a new set of genetic targets with potential therapeutic benefit.
Effects of Thermal Annealing on the Properties of Mechanically Exfoliated Suspended and On-Substrate Few-Layer Graphene
Graphene’s novel electrical, optical, and mechanical properties are affected both by substrate interaction and processing steps required to fabricate contacts and devices. Annealing is used to clean graphene devices, but this can lead to doping and defect changes and strain effects. There is often disagreement about which of these effects are occurring and which result in observed changes in Raman spectra. The effects of vacuum annealing on mechanically exfoliated pristine, suspended, and attached thin and thick few-layer graphene on SiO2/Si are investigated here using scanning electron microscopy (SEM), Raman spectroscopy, and atomic force microscopy (AFM). Before annealing, Raman shows that the differences in 2D and G band positions and the appearance of a disorder-induced D band of all regions were mainly because of compressive or tensile structural deformations emerging through mechanical exfoliation instead of charge doping. Annealing at low temperature is sufficient to eliminate most of the defects. However, compressive strain is induced in the sheet by annealing at high temperature, and for thin regions increased substrate conformation leads to the apparent disappearance of the sheets. The intensity ratio of the 2D and G bands also reduces with induced compressive strain, and thus should not be used to detect doping.
Effect of Applied Pressure on the Electrical Resistance of Carbon Nanotube Fibers
Carbon nanotubes (CNTs) can be spun into fibers as potential lightweight replacements for copper in electrical current transmission since lightweight CNT fibers weigh <1/6th that of an equivalently dimensioned copper wire. Experimentally, it has been shown that the electrical resistance of CNT fibers increases with longitudinal strain; however, although fibers may be under radial strain when they are compressed during crimping at contacts for use in electrical current transport, there has been no study of this relationship. Herein, we apply radial stress at the contact to a CNT fiber on both the nano- and macro-scale and measure the changes in fiber and contact resistance. We observed an increase in resistance with increasing pressure on the nanoscale as well as initially on the macro scale, which we attribute to the decreasing of axial CNT…CNT contacts. On the macro scale, the resistance then decreases with increased pressure, which we attribute to improved radial contact due to the closing of voids within the fiber bundle. X-ray photoelectron spectroscopy (XPS) and UV photoelectron spectroscopy (UPS) show that applied pressure on the fiber can damage the π–π bonding, which could also contribute to the increased resistance. As such, care must be taken when applying radial strain on CNT fibers in applications, including crimping for electrical contacts, lest they operate in an unfavorable regime with worse electrical performance.
Increased Electrical Conductivity of Carbon Nanotube Fibers by Thermal and Voltage Annealing
We report the effect of annealing, both electrical and by applied voltage, on the electrical conductivity of fibers spun from carbon nanotubes (CNTs). Commercial CNT fibers were used as part of a larger goal to better understand the factors that go into making a better electrical conductor from CNT fibers. A study of thermal annealing in a vacuum up to 800 °C was performed on smaller fiber sections along with a separate analysis of voltage annealing up to 7 VDC; both exhibited a sweet spot in the process as determined by a combination of a two-point probe measurement with a nanoprobe, resonant Raman spectroscopy, and X-ray photoelectron spectroscopy (XPS). Scaled-up tests were then performed in order to translate these results into bulk samples inside a tube furnace, with similar results that indicate the potential for an optimized method of achieving a better conductor sample made from CNT fibers. The results also help to determine the surface effects that need to be overcome in order to achieve this.
Effects of Vacuum Annealing on the Conduction Characteristics of ZnO Nanosheets
ZnO nanosheets are a relatively new form of nanostructure and have demonstrated potential as gas-sensing devices and dye sensitised solar cells. For integration into other devices, and when used as gas sensors, the nanosheets are often heated. Here we study the effect of vacuum annealing on the electrical transport properties of ZnO nanosheets in order to understand the role of heating in device fabrication. A low cost, mass production method has been used for synthesis and characterisation is achieved using scanning electron microscopy (SEM), photoluminescence (PL), auger electron spectroscopy (AES) and nanoscale two-point probe. Before annealing, the measured nanosheet resistance displayed a non-linear increase with probe separation, attributed to surface contamination. Annealing to 300 °C removed this contamination giving a resistance drop, linear probe spacing dependence, increased grain size and a reduction in the number of n-type defects. Further annealing to 500 °C caused the n-type defect concentration to reduce further with a corresponding increase in nanosheet resistance not compensated by any further sintering. At 700 °C, the nanosheets partially disintegrated and the resistance increased and became less linear with probe separation. These effects need to be taken into account when using ZnO nanosheets in devices that require an annealing stage during fabrication or heating during use.
Laying the Foundations for Impact: Lessons from the GCRF Evaluation
Research for development (R4D) aims to make a tangible difference to development challenges, but these effects typically take years to emerge. Evaluation (especially impact evaluation) often takes place before there is evidence of development impact. In this paper, we focus on opportunities for assessing the potential for impact at earlier stages in the research and innovation process. We argue that such a focus can help research programme managers and evaluators learn about the pre-conditions for impact and adjust accordingly. Using the Global Challenges Research Fund (GCRF) as a large-scale case of R4D evaluation, we identify and explore some of the building blocks that can increase impact potential. Guided by GCRF’s theory of change, we explore emerging evidence that highlights the importance of ways of working that supports positioning for impact. We conclude by drawing out a unifying construct around standards of development excellence; to sit alongside notions of scientific excellence for research intended to have an impact. Standards can help programme managers, researchers and evaluators learn and adapt to increase the likelihood of impact.
The effect of metal layers on the morphology and optical properties of hydrothermally grown zinc oxide nanowires
If the silicon industry is to successfully integrate ZnO nanowires (NWs) into existing devices to fully utilise the piezoelectric or optical properties of ZnO NWs, then a detailed understanding of the effect of metal interconnects on the morphology of the NWs during growth needs to be obtained. In this study, ZnO NWs were hydrothermally grown at 90 °C on Au, Ni and a Si substrate control to mimic the typical surfaces of a MetalMUMPs MEMS chip. The growth rate was significantly affected by the metal film below the ZnO seed layer, which was mainly attributed to changes in the roughness and grain size of the seed layer deposited, with the growth rate decreasing with increasing roughness. The growth rate on Si and Au surfaces also increased when isolated from the Ni samples, suggesting that Ni cations released in the solution could also inhibit growth by electrostatically attaching to the NWs surface and acting as a barrier to the incorporation of zinc ions. Furthermore, photoluminescence studies show the addition of metal layers to the substrate reduces the optical quality of the produced ZnO NWs.
What does high value care for musculoskeletal conditions mean and how do you apply it in practice? A consensus statement from a research network of physiotherapists in New South Wales, Australia
ObjectivesTo develop a physiotherapist-led consensus statement on the definition and provision of high-value care for people with musculoskeletal conditions.DesignWe performed a three-stage study using Research And Development/University of California Los Angeles Appropriateness Method methodology. We reviewed evidence about current definitions through a rapid literature review and then performed a survey and interviews with network members to gather consensus. Consensus was finalised in a face-to-face meeting.SettingAustralian primary care.ParticipantsRegistered physiotherapists who are members of a practice-based research network (n=31).ResultsThe rapid review revealed two definitions, four domains of high value care and seven themes of high-quality care. Online survey responses (n=26) and interviews (n=9) generated two additional high-quality care themes, a definition of low-value care, and 21 statements on the application of high value care. Consensus was reached for three working definitions (high value, high-quality and low value care), a final model of four high value care domains (high-quality care, patient values, cost-effectiveness, reducing waste), nine high-quality care themes and 15 statements on application.ConclusionHigh value care for musculoskeletal conditions delivers most value for the patient, and the clinical benefits outweigh the costs to the individual or system providing the care. High-quality care is evidence based, effective and safe care that is patient-centred, consistent, accountable, timely, equitable and allows easy interaction with healthcare providers and healthcare systems.