Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
LanguageLanguage
-
SubjectSubject
-
Item TypeItem Type
-
DisciplineDiscipline
-
YearFrom:-To:
-
More FiltersMore FiltersIs Peer Reviewed
Done
Filters
Reset
52
result(s) for
"Baross, John A."
Sort by:
Biogeography and ecology of the rare and abundant microbial lineages in deep-sea hydrothermal vents
by
Anderson, Rika E.
,
Baross, John A.
,
Sogin, Mitchell L.
in
Analysis
,
Archaea
,
Archaea - genetics
2015
Environmental gradients generate countless ecological niches in deep-sea hydrothermal vent systems, which foster diverse microbial communities. The majority of distinct microbial lineages in these communities occur in very low abundance. However, the ecological role and distribution of rare and abundant lineages, particularly in deep, hot subsurface environments, remain unclear. Here, we use 16S rRNA tag sequencing to describe biogeographic patterning and microbial community structure of both rare and abundant archaea and bacteria in hydrothermal vent systems. We show that while rare archaeal lineages and almost all bacterial lineages displayed geographically restricted community structuring patterns, the abundant lineages of archaeal communities displayed a much more cosmopolitan distribution. Finally, analysis of one high-volume, high-temperature fluid sample representative of the deep hot biosphere described a unique microbial community that differed from microbial populations in diffuse flow fluid or sulfide samples, yet the rare thermophilic archaeal groups showed similarities to those that occur in sulfides. These results suggest that while most archaeal and bacterial lineages in vents are rare and display a highly regional distribution, a small percentage of lineages, particularly within the archaeal domain, are successful at widespread dispersal and colonization.
Rare and abundant strains of archaea and bacteria display different biogeographic patterns in hydrothermal vent systems.
Journal Article
Evolutionary Strategies of Viruses, Bacteria and Archaea in Hydrothermal Vent Ecosystems Revealed through Metagenomics
by
Anderson, Rika E.
,
Baross, John A.
,
Sogin, Mitchell L.
in
Analysis
,
Archaea
,
Archaea - genetics
2014
The deep-sea hydrothermal vent habitat hosts a diverse community of archaea and bacteria that withstand extreme fluctuations in environmental conditions. Abundant viruses in these systems, a high proportion of which are lysogenic, must also withstand these environmental extremes. Here, we explore the evolutionary strategies of both microorganisms and viruses in hydrothermal systems through comparative analysis of a cellular and viral metagenome, collected by size fractionation of high temperature fluids from a diffuse flow hydrothermal vent. We detected a high enrichment of mobile elements and proviruses in the cellular fraction relative to microorganisms in other environments. We observed a relatively high abundance of genes related to energy metabolism as well as cofactors and vitamins in the viral fraction compared to the cellular fraction, which suggest encoding of auxiliary metabolic genes on viral genomes. Moreover, the observation of stronger purifying selection in the viral versus cellular gene pool suggests viral strategies that promote prolonged host integration. Our results demonstrate that there is great potential for hydrothermal vent viruses to integrate into hosts, facilitate horizontal gene transfer, and express or transfer genes that manipulate the hosts' functional capabilities.
Journal Article
Nitrogen Fixation at 92°C by a Hydrothermal Vent Archaeon
2006
A methanogenic archaeon isolated from deep-sea hydrothermal vent fluid was found to reduce N₂ to NH₃ at up to 92°C, which is 28°C higher than the current upper temperature limit of biological nitrogen fixation. The 16S ribosomal RNA gene of the hyperthermophilic nitrogen fixer, designated FS406-22, was 99% similar to that of non-nitrogen fixing Methanocaldococcus jannaschii DSM 2661. At its optimal growth temperature of 90°C, FS406-22 incorporated ¹⁵N₂ and expressed nifH messenger RNA. This increase in the temperature limit of nitrogen fixation could reveal a broader range of conditions for life in the subseafloor biosphere and other nitrogen-limited ecosystems than previously estimated.
Journal Article
Abundant transposases encoded by the metagenome of a hydrothermal chimney biofilm
2009
The carbonate chimneys of the Lost City Hydrothermal Field on the Mid-Atlantic Ridge are coated in thick microbial biofilms consisting of just a few dominant species. We report a preliminary analysis of a biofilm metagenome that revealed a remarkable abundance and diversity of genes potentially involved in lateral gene transfer (LGT). More than 8% of all metagenomic reads showed significant sequence similarity to transposases; all available metagenomic data sets from other environments contained at least an order of magnitude fewer transposases. Furthermore, the sequence diversity of transposase genes in the biofilm was much greater than that of 16S rRNA genes. The small size and high sequencing coverage of contigs containing transposases indicate that they are located on small but abundant extragenomic molecules. These results suggest that rampant LGT among members of the Lost City biofilm may serve as a generator of phenotypic diversity in a community with very low organismal diversity.
Journal Article
The Enzymatic and Metabolic Capabilities of Early Life
by
Goldman, Aaron David
,
Samudrala, Ram
,
Baross, John A.
in
Amino acid sequence
,
Amino acids
,
Astrobiology
2012
We introduce the concept of metaconsensus and employ it to make high confidence predictions of early enzyme functions and the metabolic properties that they may have produced. Several independent studies have used comparative bioinformatics methods to identify taxonomically broad features of genomic sequence data, protein structure data, and metabolic pathway data in order to predict physiological features that were present in early, ancestral life forms. But all such methods carry with them some level of technical bias. Here, we cross-reference the results of these previous studies to determine enzyme functions predicted to be ancient by multiple methods. We survey modern metabolic pathways to identify those that maintain the highest frequency of metaconsensus enzymes. Using the full set of modern reactions catalyzed by these metaconsensus enzyme functions, we reconstruct a representative metabolic network that may reflect the core metabolism of early life forms. Our results show that ten enzyme functions, four hydrolases, three transferases, one oxidoreductase, one lyase, and one ligase, are determined by metaconsensus to be present at least as late as the last universal common ancestor. Subnetworks within central metabolic processes related to sugar and starch metabolism, amino acid biosynthesis, phospholipid metabolism, and CoA biosynthesis, have high frequencies of these enzyme functions. We demonstrate that a large metabolic network can be generated from this small number of enzyme functions.
Journal Article
Archaea and Bacteria with Surprising Microdiversity Show Shifts in Dominance over 1,000-Year Time Scales in Hydrothermal Chimneys
by
Andreishcheva, Ekaterina N.
,
Baross, John A.
,
Kelley, Deborah S.
in
Archaea
,
Archaea - classification
,
Archaea - genetics
2010
The Lost City Hydrothermal Field, an ultramafic-hosted system located 15 km west of the Mid-Atlantic Ridge, has experienced at least 30,000 years of hydrothermal activity. Previous studies have shown that its carbonate chimneys form by mixing of ~90 °C, pH 9-11 hydrothermal fluids and cold seawater. Flow of methane and hydrogen-rich hydrothermal fluids in the porous interior chimney walls supports archaeal biofilm communities dominated by a single phylotype of Methanosarcinales. In this study, we have extensively sampled the carbonate-hosted archaeal and bacterial communities by obtaining sequences of > 200,000 amplicons of the 16S rRNA V6 region and correlated the results with isotopic (²³⁰Th) ages of the chimneys over a 1,200-year period. Rare sequences in young chimneys were commonly more abundant in older chimneys, indicating that members of the rare biosphere can become dominant members of the ecosystem when environmental conditions change. These results suggest that a long history of selection over many cycles of chimney growth has resulted in numerous closely related species at Lost City, each of which is preadapted to a particular set of reoccurring environmental conditions. Because of the unique characteristics of the Lost City Hydrothermal Field, these data offer an unprecedented opportunity to study the dynamics of a microbial ecosystem's rare biosphere over a thousand-year time scale.
Journal Article
The rocky road to biomolecules
2018
A natural chemical reaction that occurs below the sea floor makes the amino acid tryptophan without biological input. This finding reveals a process that might have helped life on Earth to begin.
An amino acid can be made naturally without requiring biological input.
Journal Article
Metagenomic Comparison of Two Thiomicrospira Lineages Inhabiting Contrasting Deep-Sea Hydrothermal Environments
2010
The most widespread bacteria in oxic zones of carbonate chimneys at the serpentinite-hosted Lost City hydrothermal field, Mid-Atlantic Ridge, belong to the Thiomicrospira group of sulfur-oxidizing chemolithoautotrophs. It is unclear why Thiomicrospira-like organisms thrive in these chimneys considering that Lost City hydrothermal fluids are notably lacking in hydrogen sulfide and carbon dioxide.
Here we describe metagenomic sequences obtained from a Lost City carbonate chimney that are highly similar to the genome of Thiomicrospira crunogena XCL-2, an isolate from a basalt-hosted hydrothermal vent in the Pacific Ocean. Even though T. crunogena and Lost City Thiomicrospira inhabit different types of hydrothermal systems in different oceans, their genomic contents are highly similar. For example, sequences encoding the sulfur oxidation and carbon fixation pathways (including a carbon concentration mechanism) of T. crunogena are also present in the Lost City metagenome. Comparative genomic analyses also revealed substantial genomic changes that must have occurred since the divergence of the two lineages, including large genomic rearrangements, gene fusion events, a prophage insertion, and transposase activity.
Our results show significant genomic similarity between Thiomicrospira organisms inhabiting different kinds of hydrothermal systems in different oceans, suggesting that these organisms are widespread and highly adaptable. These data also indicate genomic processes potentially associated with the adaptation of these lineages into strikingly different habitats.
Journal Article
Physiological Differentiation within a Single-Species Biofilm Fueled by Serpentinization
2011
Carbonate chimneys at the Lost City hydrothermal field are coated in biofilms dominated by a single phylotype of archaea known as Lost City Methanosarcinales . In this study, we have detected surprising physiological complexity in single-species biofilms, which is typically indicative of multispecies biofilm communities. Multiple cell morphologies were visible within the biofilms by transmission electron microscopy, and some cells contained intracellular membranes that may facilitate methane oxidation. Both methane production and oxidation were detected at 70 to 80°C and pH 9 to 10 in samples containing the single-species biofilms. Both processes were stimulated by the presence of hydrogen (H 2 ), indicating that methane production and oxidation are part of a syntrophic interaction. Metagenomic data included a sequence encoding AMP-forming acetyl coenzyme A synthetase, indicating that acetate may play a role in the methane-cycling syntrophy. A wide range of nitrogen fixation genes were also identified, many of which were likely acquired via lateral gene transfer (LGT). Our results indicate that cells within these single-species biofilms may have differentiated into multiple physiological roles to form multicellular communities linked by metabolic interactions and LGT. Communities similar to these Lost City biofilms are likely to have existed early in the evolution of life, and we discuss how the multicellular characteristics of ancient hydrogen-fueled biofilm communities could have stimulated ecological diversification, as well as unity of biochemistry, during the earliest stages of cellular evolution. IMPORTANCE Our previous work at the Lost City hydrothermal field has shown that its carbonate chimneys host microbial biofilms dominated by a single uncultivated “species” of archaea. In this paper, we integrate evidence from these previous studies with new data on the metabolic activity and cellular morphology of these archaeal biofilms. We conclude that the archaeal biofilm must contain cells that are physiologically and possibly genetically differentiated with respect to each other. These results are especially interesting considering the possibility that the first cells originated and evolved in hydrothermal systems similar to Lost City. Our previous work at the Lost City hydrothermal field has shown that its carbonate chimneys host microbial biofilms dominated by a single uncultivated “species” of archaea. In this paper, we integrate evidence from these previous studies with new data on the metabolic activity and cellular morphology of these archaeal biofilms. We conclude that the archaeal biofilm must contain cells that are physiologically and possibly genetically differentiated with respect to each other. These results are especially interesting considering the possibility that the first cells originated and evolved in hydrothermal systems similar to Lost City.
Journal Article
VOLCANOES, FLUIDS, AND LIFE AT MID-OCEAN RIDGE SPREADING CENTERS
2002
The recent recognition of a potentially vast, unexplored hot microbial
biosphere associated with active volcanism along the global mid-ocean ridge
network has fundamentally shifted concepts of how planets and life coevolve.
Many processes intrinsic to the dynamics of the spreading center volcanic
system provide partial or complete nutritional fluxes that support diverse
microbial communities that thrive under extreme conditions on and beneath the
seafloor. Mantle melting, volcanism, and fluid-rock reactions transport
volatiles from the asthenosphere to the hydrosphere. Volcanic heat and
exothermic reactions drive circulation of nutrient-rich fluids from which
chemosynthetic organisms gain metabolic energy. In turn, many of these
organisms symbiotically support macrofaunal communities that populate the
vents. Long-term seafloor observatories will allow exploration of linkages
between volcanism and this newly discovered biosphere. Such approaches may
provide essential new information about our own planet while providing
critically needed insights into how we can explore other planets for life.
Journal Article