Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
104 result(s) for "Barrangou, Rodolphe"
Sort by:
Applications of CRISPR technologies in research and beyond
The unique capabilities of CRISPR technologies have enabled a broad range of applications in biomedicine and agriculture. Programmable DNA cleavage using CRISPR–Cas9 enables efficient, site-specific genome engineering in single cells and whole organisms. In the research arena, versatile CRISPR-enabled genome editing has been used in various ways, such as controlling transcription, modifying epigenomes, conducting genome-wide screens and imaging chromosomes. CRISPR systems are already being used to alleviate genetic disorders in animals and are likely to be employed soon in the clinic to treat human diseases of the eye and blood. Two clinical trials using CRISPR-Cas9 for targeted cancer therapies have been approved in China and the United States. Beyond biomedical applications, these tools are now being used to expedite crop and livestock breeding, engineer new antimicrobials and control disease-carrying insects with gene drives.
CRISPR/Cas, the Immune System of Bacteria and Archaea
Microbes rely on diverse defense mechanisms that allow them to withstand viral predation and exposure to invading nucleic acid. In many Bacteria and most Archaea, clustered regularly interspaced short palindromic repeats (CRISPR) form peculiar genetic loci, which provide acquired immunity against viruses and plasmids by targeting nucleic acid in a sequence-specific manner. These hypervariable loci take up genetic material from invasive elements and build up inheritable DNA-encoded immunity over time. Conversely, viruses have devised mutational escape strategies that allow them to circumvent the CRISPR/Cas system, albeit at a cost. CRISPR features may be exploited for typing purposes, epidemiological studies, host-virus ecological surveys, building specific immunity against undesirable genetic elements, and enhancing viral resistance in domesticated microbes.
Cas9–crRNA ribonucleoprotein complex mediates specific DNA cleavage for adaptive immunity in bacteria
Clustered, regularly interspaced, short palindromic repeats (CRISPR)/CRISPR-associated (Cas) systems provide adaptive immunity against viruses and plasmids in bacteria and archaea. The silencing of invading nucleic acids is executed by ribonucleoprotein complexes preloaded with small, interfering CRISPR RNAs (crRNAs) that act as guides for targeting and degradation of foreign nucleic acid. Here, we demonstrate that the Cas9–crRNA complex of the Streptococcus thermophilus CRISPR3/Cas system introduces in vitro a double-strand break at a specific site in DNA containing a sequence complementary to crRNA. DNA cleavage is executed by Cas9, which uses two distinct active sites, RuvC and HNH, to generate site-specific nicks on opposite DNA strands. Results demonstrate that the Cas9–crRNA complex functions as an RNA-guided endonuclease with RNA-directed target sequence recognition and protein-mediated DNA cleavage. These findings pave the way for engineering of universal programmable RNA-guided DNA endonucleases.
Advances in lignocellulosic feedstocks for bioenergy and bioproducts
Lignocellulose, an abundant renewable resource, presents a promising alternative for sustainable energy and industrial applications. However, large-scale adoption of lignocellulosic feedstocks faces considerable obstacles, including scalability, bioprocessing efficiency, and resilience to climate change. This Review examines current efforts and future opportunities for leveraging lignocellulosic feedstocks in bio-based energy and products, with a focus on enhancing conversion efficiency and scalability. It also explores emerging biotechnologies such as CRISPR-based genome editing informed by machine learning, aimed at improving feedstock traits and reducing the environmental impact of fossil fuel dependence. Lignocellulose is a promising feedstock to produce bioenergy and biomaterials. Here, the authors review current efforts, including genome editing informed by machine learning, for lignocellulosic feedstock-based bioenergy and biomaterials production and provide outlook for improving feedstock traits.
Evolutionary classification of CRISPR–Cas systems: a burst of class 2 and derived variants
The number and diversity of known CRISPR–Cas systems have substantially increased in recent years. Here, we provide an updated evolutionary classification of CRISPR–Cas systems and cas genes, with an emphasis on the major developments that have occurred since the publication of the latest classification, in 2015. The new classification includes 2 classes, 6 types and 33 subtypes, compared with 5 types and 16 subtypes in 2015. A key development is the ongoing discovery of multiple, novel class 2 CRISPR–Cas systems, which now include 3 types and 17 subtypes. A second major novelty is the discovery of numerous derived CRISPR–Cas variants, often associated with mobile genetic elements that lack the nucleases required for interference. Some of these variants are involved in RNA-guided transposition, whereas others are predicted to perform functions distinct from adaptive immunity that remain to be characterized experimentally. The third highlight is the discovery of numerous families of ancillary CRISPR-linked genes, often implicated in signal transduction. Together, these findings substantially clarify the functional diversity and evolutionary history of CRISPR–Cas.The number and diversity of known CRISPR–Cas systems have substantially increased in recent years. In this Review, Koonin and colleagues provide an updated evolutionary classification of CRISPR–Cas systems and cas genes, with an emphasis on major developments, and outline a complete scenario for the origins and evolution of CRISPR–Cas systems.
CRISPR-based screening of genomic island excision events in bacteria
Genomic analysis of Streptococcus thermophilus revealed that mobile genetic elements (MGEs) likely contributed to gene acquisition and loss during evolutionary adaptation to milk. Clustered regularly interspaced short palindromic repeats–CRISPR-associated genes (CRISPR-Cas), the adaptive immune system in bacteria, limits genetic diversity by targeting MGEs including bacteriophages, transposons, and plasmids. CRISPR-Cas systems are widespread in streptococci, suggesting that the interplay between CRISPR-Cas systems and MGEs is one of the driving forces governing genome homeostasis in this genus. To investigate the genetic outcomes resulting from CRISPR-Cas targeting of integrated MGEs, in silico prediction revealed four genomic islands without essential genes in lengths from 8 to 102 kbp, totaling 7% of the genome. In this study, the endogenous CRISPR3 type II system was programmed to target the four islands independently through plasmid-based expression of engineered CRISPR arrays. Targeting lacZ within the largest 102-kbp genomic island was lethal to wild-type cells and resulted in a reduction of up to 2.5-log in the surviving population. Genotyping of Lac ⁻ survivors revealed variable deletion events between the flanking insertion-sequence elements, all resulting in elimination of the Lac-encoding island. Chimeric insertion sequence footprints were observed at the deletion junctions after targeting all of the four genomic islands, suggesting a common mechanism of deletion via recombination between flanking insertion sequences. These results established that self-targeting CRISPR-Cas systems may direct significant evolution of bacterial genomes on a population level, influencing genome homeostasis and remodeling. Significance The development of Clustered regularly interspaced short palindromic repeats (CRISPR)–CRISPR-associated genes (CAS)–based technology for targeted genome editing has revolutionized molecular biology approaches, but significant and outstanding gaps exist for applications in bacteria, the native hosts of these adaptive immune systems. This study shows that CRISPR-Cas systems can be directed to target and delete genomic islands that are flanked by insertion-sequence elements and devoid of essential genes. Naturally occurring minor subpopulations harboring deletions in genomic islands were identified and readily isolated using CRISPR-Cas screening. Promising applications of this approach can define minimal bacterial genomes, determine essential genes, and characterize genetically heterogeneous bacterial populations.
Cas3 is a single-stranded DNA nuclease and ATP-dependent helicase in the CRISPR/Cas immune system
Clustered regularly interspaced short palindromic repeat (CRISPR) is a recently discovered adaptive prokaryotic immune system that provides acquired immunity against foreign nucleic acids by utilizing small guide crRNAs (CRISPR RNAs) to interfere with invading viruses and plasmids. In Escherichia coli , Cas3 is essential for crRNA‐guided interference with virus proliferation. Cas3 contains N‐terminal HD phosphohydrolase and C‐terminal Superfamily 2 (SF2) helicase domains. Here, we provide the first report of the cloning, expression, purification and in vitro functional analysis of the Cas3 protein of the Streptococcus thermophilus CRISPR4 (Ecoli subtype) system. Cas3 possesses a single‐stranded DNA (ssDNA)‐stimulated ATPase activity, which is coupled to unwinding of DNA/DNA and RNA/DNA duplexes. Cas3 also shows ATP‐independent nuclease activity located in the HD domain with a preference for ssDNA substrates. To dissect the contribution of individual domains, Cas3 separation‐of‐function mutants (ATPase + /nuclease − and ATPase − /nuclease + ) were obtained by site‐directed mutagenesis. We propose that the Cas3 ATPase/helicase domain acts as a motor protein, which assists delivery of the nuclease activity to Cascade–crRNA complex targeting foreign DNA. Cas3 is an essential protein of unknown function required for CRISPR‐based bacteriophage immunity in bacteria. Here, the biochemical activities of Cas3 are demonstrated and mechanistic implications for immunity are discussed.
Adaptive response to iterative passages of five Lactobacillus species in simulated vaginal fluid
Background Microbiome and metagenomic studies have given rise to a new understanding of microbial colonization of various human tissues and their ability to impact our health. One human microbiome growing in notoriety, the vaginal microbiome, stands out given its importance for women’s health, and is peculiar in terms of its relative bacterial composition, including its simplicity and typical domination by a small number of Lactobacillus species. The loss of Lactobacillus dominance is associated with disorders such as bacterial vaginosis, and efforts are now underway to understand the ability of Lactobacillus species to colonize the vaginal tract and adapt to this dynamic and acidic environment. Here, we investigate how various Lactobacillus species often isolated from the vaginal and intestinal cavities genomically and transcriptionally respond to iterative growth in simulated vaginal fluid. Results We determined the genomes and transcriptomes of L. acidophilus, L. crispatus, L. fermentum, L. gasseri, and L. jensenii and compared profiles after 50, 100, 500, and 1000 generations of iterative passages in synthetic vaginal fluid. In general, we identified relatively few genetic changes consisting of single nucleotide polymorphisms, with higher counts occurring more frequently in non-vaginal isolated species. Transcriptional profiles were more impacted over time and tended to be more extensive for species that typically do not dominate the vaginal tract, reflecting a more extensive need to adapt to a less familiar environment. Conclusions This study provides insights into how vaginal and non-vaginal Lactobacillus species respond and adapt to a simulated vaginal environment. Overall, trends indicate high genomic stability for all species involved, with more variability in the transcriptome especially for non-dominant species of the vaginal tract.
Expanding the biotechnology potential of lactobacilli through comparative genomics of 213 strains and associated genera
Lactobacilli are a diverse group of species that occupy diverse nutrient-rich niches associated with humans, animals, plants and food. They are used widely in biotechnology and food preservation, and are being explored as therapeutics. Exploiting lactobacilli has been complicated by metabolic diversity, unclear species identity and uncertain relationships between them and other commercially important lactic acid bacteria. The capacity for biotransformations catalysed by lactobacilli is an untapped biotechnology resource. Here we report the genome sequences of 213 Lactobacillus strains and associated genera, and their encoded genetic catalogue for modifying carbohydrates and proteins. In addition, we describe broad and diverse presence of novel CRISPR-Cas immune systems in lactobacilli that may be exploited for genome editing. We rationalize the phylogenomic distribution of host interaction factors and bacteriocins that affect their natural and industrial environments, and mechanisms to withstand stress during technological processes. We present a robust phylogenomic framework of existing species and for classifying new species. Lactobacillus is a lactic acid bacteria and has a wide range of application from use in probiotic food production to biotherapeutics. Here, the authors sequence and compare the genomes of 213 different Lactobacillus strains and related genera, and provide new insight into phylogenomic organization and adaptive immunity elements in this bacteria family.
The Lactobacillus Bile Salt Hydrolase Repertoire Reveals Niche-Specific Adaptation
Bile acids play an integral role in shaping the gut microbiota and host physiology by regulating metabolic signaling, weight gain, and serum cholesterol and liver triglyceride levels. Given these important roles of bile acids, we investigated the presence of bile salt hydrolase (BSH) in Lactobacillus genomes representing 170 different species, determined strain- and species-specific patterns of occurrences, and expanded on the diversity of the BSH repertoire in this genus. While our data showed that 28% of Lactobacillus species encode BSH proteins, these species are associated mainly with vertebrate-adapted niches, demonstrating selective pressure on lactobacilli to evolve to adapt to specific environments. These new data will allow targeted selection of specific strains of lactobacilli and BSH proteins for future mechanistic studies to explore their therapeutic potential for treating metabolic disorders. Various Lactobacillus species have been reported to deconjugate bile acids in the gastrointestinal tract (GIT) through the action of bile salt hydrolase (BSH) proteins. This function contributes to altering the gut microbiota composition and bile metabolism and detoxification and to lowering cholesterol levels. Here, we investigated the Lactobacillus BSH repertoire across 170 sequenced species. We used hidden Markov models to distinguish between BSH and closely related penicillin-V acylase (PVA) proteins. Even though BSH and PVA proteins have very different target substrates, they share high sequence similarity and are often misannotated. We determined that 82/170 (48.24%) species encoded PVA proteins, 39/170 (22.94%) species encoded BSH proteins, and 8/170 (4.71%) species encoded both BSH and PVA proteins, while 57/170 (33.53%) species encoded neither. Mapping the occurrence of BSH-encoding species onto a phylogenetic tree revealed that BSH-encoding lactobacilli primarily adopt the vertebrate-adapted lifestyle but not the environmental or plant-associated subsets. Phylogenetic analysis of the BSH sequences revealed two distinct clades, several conserved motifs, and the presence of six previously reported active-site residues. These data will guide future mechanistic studies of BSH activity and contribute to the development and selection of BSH-encoding Lactobacillus strains with therapeutic potential. IMPORTANCE Bile acids play an integral role in shaping the gut microbiota and host physiology by regulating metabolic signaling, weight gain, and serum cholesterol and liver triglyceride levels. Given these important roles of bile acids, we investigated the presence of bile salt hydrolase (BSH) in Lactobacillus genomes representing 170 different species, determined strain- and species-specific patterns of occurrences, and expanded on the diversity of the BSH repertoire in this genus. While our data showed that 28% of Lactobacillus species encode BSH proteins, these species are associated mainly with vertebrate-adapted niches, demonstrating selective pressure on lactobacilli to evolve to adapt to specific environments. These new data will allow targeted selection of specific strains of lactobacilli and BSH proteins for future mechanistic studies to explore their therapeutic potential for treating metabolic disorders.