Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
23 result(s) for "Barrantes-Freer, Alonso"
Sort by:
EGFR Amplification in Diffuse Glioma and Its Correlation to Language Tract Integrity
Background: The epidermal growth factor receptor (EGFR) is an important factor in the behavior of diffuse glioma, serving as a potential biomarker for tumor aggressiveness and a therapeutic target. Diffusion tensor imaging (DTI) provides insights into the microstructural integrity of brain tissues, allowing for detailed visualization of tumor-induced changes in white matter tracts. This imaging technique can complement molecular pathology by correlating imaging findings with molecular markers and genetic profiles, potentially enhancing the understanding of tumor behavior and aiding in the formulation of targeted therapeutic strategies. The present study aimed to investigate the molecular properties of diffuse glioma based on DTI sequences. Methods: A total of 27 patients with diffuse glioma (in accordance with the WHO 2021 classification) were investigated using preoperative DTI sequences. The study was conducted using the tractography software DSI Studio (Hou versions 2025.04.16). Following the preprocessing of the raw data, volumes of the arcuate fasciculus (AF), frontal aslant tract (FAT), inferior fronto-occipital fasciculus (IFOF), superior longitudinal fasciculus (SLF), and uncinate fasciculus (UF) were reconstructed, and fractional anisotropy (FA) was derived. Molecular pathological examination was conducted to assess the presence of EGFR amplifications. Results: The mean age of patients was 56 ± 13 years, with 33% females. EGFR amplification was observed in 8/27 (29.6%) of cases. Following correction for multiple comparisons, FA in the left AF (p = 0.025) and in the left FAT (p = 0.020) was found to be significantly lowered in EGFR amplified glioma. In the right language network, however, no statistically significant changes were observed. Conclusions: EGFR amplification may be associated with lower white matter integrity of left hemispheric language tracts, possibly impairing neurological function and impacting surgical outcomes. The underlying molecular and cellular mechanisms driving this association require further investigation.
CDKN2A/B deletions are strongly associated with meningioma progression: a meta-analysis of individual patient data
Homozygous CDKN2A/B deletion has been associated with an increased risk of recurrence in meningiomas. However, the evidence is confined to a limited number of studies, and the importance of heterozygous CDKN2A/B deletions remains insufficiently investigated. Hence, the present meta-analysis reconstructs individual patient data (IPD) and reconstructs the probabilities of progression-free survival (PFS) stratified by CDKN2A/B status. IPD of PFS rates were extracted from published Kaplan–Meier plots using the R package IPDfromKM in R studio (RStudio, Boston, MA, USA). Reconstructed Kaplan–Meier Plots of the pooled IPD data were created. One-stage and two-stage meta-analyses were performed. Hazard ratios (HR) were used as effective measures. Of 181 records screened, four articles with 2521 participants were included. The prevalence of homozygous CDKN2A/B deletions in the included studies was 0.049 (95% CI 0.040–0.057), with higher tumor grades associated with a significantly greater proportion of CDKN2A/B deletions. The reconstructed PFS curves for the pooled cohort showed that the median PFS time of patients with a CDKN2A/B wild-type status, heterozygous or homozygous CDKN2A/B deletion was 180.0 (95% CI 145.7–214.3), 26.1 (95% CI 23.3–29.0), and 11.00 (95% CI 8.6–13.3) months, respectively ( p  < 0.0001). Both hetero- or homozygous CDKN2A/B deletions were significantly associated with shortened time to meningioma progression. One-stage meta-analysis showed that hetero- (HR: 5.5, 95% CI 4.0–7.6, p  < 0.00001) and homozygous CDKN2A/B deletions (HR: 8.4, 95% CI 6.4–11.0, p  < 0.00001) are significantly associated with shortened time to meningioma progression. Multivariable Cox regression analysis of progression in a subgroup with available covariates (age, sex, WHO grade, and TERT status) and also two-stage meta-analysis confirmed and validated the results of the one-stage analysis that both heterozygous and homozygous CDKN2A/B deletions are of prognostic importance. Further large-scale studies of WHO grade 2 and 3 meningiomas are needed to validate the importance of heterozygous CDKN2A/B deletions with consideration of established factors.
Homozygous CDKN2A/B deletions in low- and high-grade glioma: a meta-analysis of individual patient data and predictive values of p16 immunohistochemistry testing
CDKN2A/B deletions are prognostically relevant in low- and high-grade gliomas. Data on this is derived from heterogeneous series, an accurate estimation of survival risk from homozygous CDKN2A/B deletion is missing. Besides genetic testing, p16 -immunohistochemistry (IHC) as a less cost intensive means for indirect detection of CDKN2A/B alterations is possible but not validated in larger datasets. The present meta-analysis aimed to (1) reconstruct individual patient data (IPD) and estimate overall survival (OS) stratified by CDKN2A/B status from all literature and to (2) determine accuracy of p16 testing for CDKNA2/B detection from published studies. For survival analysis according to CDKN2A/B status 460 records were screened, four articles with 714 participants were included. In IDH -wildtype ( IDH -wt) gliomas, 57.07% harbored the deletion compared to 9.76% in IDH -mutant ( IDH -mut) gliomas. Median OS of patients with IDH -wt gliomas and homozygous CDKN2A/B deletion was 13.0 months compared to 18.0 months with non-deleted CDKN2A/B ( p  = 0.014, Log-Rank). With homozygous deletion of CDKN2A/B the risk of death was increased by 1.5 (95%-CI 1.1–2.1). Median OS in patients with IDH -mut gliomas without CDKN2A/B deletion was 92.0 months compared to 40.0 months with CDKN2A/B deletion ( p  < 0.001, Log-Rank). CDKN2A/B deletions were associated with a significantly shorter OS (HR = 3.2; 95%-CI 2.2–5.5). For p16 IHC analysis, 10 eligible studies with 1087 examined samples were included. The cut-off for retention differed between the studies. In 588/662 p16 retained cases CDKN2A/B deletions was not detected, implying a negative predictive value (NPV) of p16 staining of 88.8%. Conversely, 279/425 p16 absent cases showed a CDKN2A/B deletion resulting in a positive predictive value (PPV) of 65.6%. Sensitivity of p16 staining for CDKN2A/B detection was 79.0%, specificity 80.1%. Highest diagnostic accuracy of p16 IHC was reached with a cut-off of > 5% and within IDH- mut glioma.
Frequency of BRAF V600E mutations in 969 central nervous system neoplasms
Background Treatment options for oncological diseases have been enhanced by the advent of targeted therapies. The point mutation of the BRAF gene at codon 600 (BRAF V600E) is found in several tumor entities and can be approached with selective inhibitory antibodies. The BRAF inhibitor vemurafenib has demonstrated clinical efficacy in patients with BRAF V600E-mutant melanoma brain metastases and in other cancer diseases. Therefore the BRAF V600E mutation is a highly interesting oncological target in brain tumors. Methods This study assesses the BRAF V600E mutation status in 969 intracranial neoplasms using a tissue microarray method and immunohistochemical staining with the mutation-specific VE-1 antibody, followed by sequencing of positively stained cases. Results Out of 784 primary brain tumors seven cases with a BRAF V600E mutation were detected (7/784, 1 %). Six of these cases were neuroepithelial tumors (6/667, 1 %) encompassing 2 astrocytomas WHO grade II (2/42, 5 %), 1 gliosarcoma WHO grade IV (1/75, 1 %) and 3 glioblastomas WHO grade IV (3/312, 1 %). Interestingly, all three mutant glioblastomas showed epithelioid histopathological features. Patients with V600E mutated astrocytic tumors were significantly younger (mean age 15.3 years) than wildtype cases (58.2 years). Among three rhabdoid meningiomas, one case was mutated (1/3) while all other grade I-III meningiomas (1/116, 1 %) and all fifty vestibular schwannomas analyzed were of wildtype status. The vast majority of the BRAF V600E mutations were found in cerebral metastases of malignant melanomas and carcinomas (29/135, 22 %), with false-positive staining found in four breast cancer cases and two non-small-cell lung carcinoma (NSCLC) samples. Conclusions Our data suggest routine screening for BRAF V600E mutations for glioblastomas WHO grade IV below the age of 30, especially in glioblastomas with epithelioid features and in all rhabdoid meningiomas WHO grade III. For colorectal carcinoma, thyroid cancer, malignant melanoma and gliomas BRAF V600E immunostaining is sufficient for screening purposes. We also recommend routine immunohistochemical staining followed by sequencing validation in rare CNS metastases or metastases of unknown primary. Immunohistochemical analysis using mutation-specific antibodies on tissue microarrays is a feasible, time- and cost-efficient approach to high-throughput screening for specific mutations in large tumor series but sequencing validation is necessary in unexpected cases.
The prognostic role of IDH mutations in homogeneously treated patients with anaplastic astrocytomas and glioblastomas
The detection of IDH mutations in patients with diffusely infiltrating malignant astrocytomas resulted in substantial modifications in the concept of WHO classification of these tumors. An important underlying observation was that patients with anaplastic astrocytomas (AA) without IDH mutation had a clinical course similar to that of patients with glioblastomas (GBM). The underlying observations of the German Glioma Network and NOA-04, however, were based on mixed patient cohorts. While most GBM patients received combined radiochemotherapy, patients with AA usually had radiotherapy or chemotherapy only. This intrinsic shortcoming of the study raised the question of whether patients with AA, IDH wildtype, WHO grade III, might have better prognosis if treated with combined radiochemotherapy than patients with GBM receiving the same combination therapy. Thus, the question remains whether the established histopathological grading criteria for malignant astrocytomas in the absence of an IDH mutation are still important if neither vascular proliferation nor necrosis are detectable. All patients in the cohort investigated here with the diagnosis of AA or GBM were subjected to a combined radiochemotherapy according to the Stupp protocol independently of the histopathological diagnosis. Thus, the analysis of these patients allows to clarify whether patients with AA, IDH wildtype, WHO grade III have a prognosis similar to that of GBM, IDH wildtype, WHO grade IV, even under equivalent therapeutic conditions. We determined the IDH1 and IDH2 status by sequencing, the MGMT status by pyrosequencing after bisulfite treatment and the EGFR status of the patients by FISH. In fact, the patients with the histopathological diagnosis of an AA IDH wild-type under similar aggressive therapy showed a comparable and therefore no better prognosis (median overall survival (mOS) 16 months) than patients with a GBM (mOS 13 months). Instead, patients with an AA and an IDH mutation receiving the same therapy had a mOS of 54 months. Thus, it can be concluded that in the absence of an IDH mutation, the established histopathological grading criteria ‘necrosis’ and ‘vascular proliferation’ actually lose their prognostic significance. If, on the other hand, patients with malignant astrocytomas and an IDH mutation are examined, there is still a difference between patients with necrosis and/or vascular proliferation and those whose tumors do not show such characteristics. Accordingly, in patients with malignant astrocytomas with IDH mutation it can be concluded that a histological differentiation between AA IDH mutated and GBM IDH mutated remains beneficial from a prognostic perspective.
VOPP1::EGFR fusion is associated with NFκB pathway activation in a glioneural tumor with histological features of ganglioglioma
Glioneural tumors are primary brain tumors that consist of both neural and glial neoplastic cells, often presenting with seizures and primarily affecting children and young adults. Specifically, gangliogliomas are composed of neoplastic ganglion and glial cells, accompanied by other characteristic histological features such as lymphoid cuffing, eosinophilic granular bodies, and Rosenthal fibers. Oncogenic driver mutations and gene fusions have been shown to be of prognostic significance in gangliogliomas and can offer potential therapeutic targets. Typical molecular alterations are mitogen-activated protein kinase (MAPK) pathway activations with BRAF p.V600E being the most frequent one. Here, we report for the first time a gene fusion between epidermal growth factor receptor ( EGFR ) and vesicular, overexpressed in cancer, prosurvival protein 1 ( VOPP1) as a potential oncogenic driver in a glioneuronal tumor morphologically resembling ganglioglioma. VOPP1::EGFR fusion associated with the activation of nuclear factor kappa-light-chain-enhancer of activated B cells (NFκB) signaling. Furthermore, we provide histological and epigenetic findings and clinical outcome. The case expands the known molecular spectrum of oncogenic drivers in glioneuronal tumors and provides a link to potentially prognostic and therapeutically relevant alterations.
Astroglial modulation of synaptic function in the non-demyelinated cerebellar cortex is dependent on MyD88 signaling in a model of toxic demyelination
Progressive neurological decline in multiple sclerosis is associated with axonal loss and synaptic dysfunction in the non-demyelinated normal appearing gray matter (NAGM) and prominently in the cerebellum. In contrast to early disease stages, where synaptic and neuro-axonal pathology correlates with the extent of T cell infiltration, a prominent role of the innate immune system has been proposed for progressive MS. However, the specific contribution of microglia and astrocytes to synaptic cerebellar pathology in the NAGM– independent of an adaptive T cell response - remains largely unexplored. In the present study, we quantified synaptic changes in the cerebellar NAGM distant from demyelinated lesions in a mouse model of toxic demyelination. Proteomic analysis of the cerebellar cortex revealed differential regulation of synaptic and glutamate transport proteins in the absence of evident structural synaptic pathology or local gray matter demyelination. At the functional level, synaptic changes manifested as a reduction in frequency-dependent facilitation at the parallel fiber– Purkinje cell synapse. Further, deficiency of MyD88, an adaptor protein of the innate immune response, associated with a functional recovery in facilitation, reduced changes in the differential expression of synaptic and glutamate transport proteins, and reduced transcription levels of inflammatory cytokines. Nevertheless, the characteristics of demyelinating lesions and their associated cellular response were similar to wild type animals. Our work brings forward an experimental paradigm mimicking the diffuse synaptic pathology independent of demyelination in late stage MS and highlights the complex regulation of synaptic pathology in the cerebellar NAGM. Moreover, our findings suggest a role of astrocytes, in particular Bergmann glia, as key cellular determinants of cerebellar synaptic dysfunction.
Expression of Olig2, Nestin, NogoA and AQP4 have no impact on overall survival in IDH-wildtype glioblastoma
Despite many years of research efforts and clinical trials the prognosis of patients diagnosed with glioblastoma remains very poor. The oligodendrocyte transcription factor 2 (Olig2) was identified as a marker for glioma stem cells, which are believed to be responsible for glioma recurrence and therapy resistance. In this retrospective analysis we assessed the prognostic value of oligodendroglial and glioma stem cell markers in 113 IDH-wildtype glioblastomas. Immunohistochemical staining for Olig2, NogoA, AQP4 and Nestin was performed in combination with sequencing of IDH1 and IDH2 as well as promotor methylation analysis of the MGMT gene. Even though differences in overall survival according to Olig2 expression were observed, univariate and multivariate survival analysis did not reveal a firm significant prognostic impact of Olig2, NogoA, AQP4 or Nestin expression. Additionally, no differences in the expression of these markers depending on clinical status, age or gender were found. The established independent prognostic factors age<65, Karnofsky Performance Status> = 70 and methylated MGMT gene promoter were significant in the multivariate analysis. In conclusion expression of oligodendroglial and glioma stem cell markers do not have an independent prognostic effect in IDH-wildtype glioblastoma.
CD133 Expression Is Not Synonymous to Immunoreactivity for AC133 and Fluctuates throughout the Cell Cycle in Glioma Stem-Like Cells
A transmembrane protein CD133 has been implicated as a marker of stem-like glioma cells and predictor for therapeutic response in malignant brain tumours. CD133 expression is commonly evaluated by using antibodies specific for the AC133 epitope located in one of the extracellular domains of membrane-bound CD133. There is conflicting evidence regarding the significance of the AC133 epitope as a marker for identifying stem-like glioma cells and predicting the degree of malignancy in glioma cells. The reasons for discrepant results between different studies addressing the role of CD133/AC133 in gliomas are unclear. A possible source for controversies about CD133/AC133 is the widespread assumption that expression patterns of the AC133 epitope reflect linearly those of the CD133 protein. Consequently, the readouts from AC133 assessments are often interpreted in terms of the CD133 protein. The purpose of this study is to determine whether and to what extent do the readouts obtained with anti-AC133 antibody correspond to the level of CD133 protein expressed in stem-like glioma cells. Our study reveals for the first time that CD133 expressed on the surface of glioma cells is poorly immunoreactive for AC133. Furthermore, we provide evidence that the level of CD133 occupancy on the surface of glioma cells fluctuates during the cell cycle. Our results offer a new explanation for numerous inconsistencies regarding the biological and clinical significance of CD133/AC133 in human gliomas and call for caution in interpreting the lack or presence of AC133 epitope in glioma cells.
Involvement of the cysteine-rich head domain in activation and desensitization of the P2X1 receptor
P2X receptors (P2XRs) are ligand-gated ion channels activated by extracellular ATP. Although the crystal structure of the zebrafish P2X4R has been solved, the exact mode of ATP binding and the conformational changes governing channel opening and desensitization remain unknown. Here, we used voltage clamp fluorometry to investigate movements in the cysteine-rich head domain of the rat P2X1R (A118-I125) that projects over the proposed ATP binding site. On substitution with cysteine residues, six of these residues (N120–I125) were specifically labeled by tetramethyl-rhodamine-maleimide and showed significant changes in the emission of the fluorescence probe on application of the agonists ATP and benzoyl-benzoyl-ATP. Mutants N120C and G123C showed fast fluorescence decreases with similar kinetics as the current increases. In contrast, mutants P121C and I125C showed slow fluorescence increases that seemed to correlate with the current decline during desensitization. Mutant E122C showed a slow fluorescence increase and fast decrease with ATP and benzoyl-benzoyl-ATP, respectively. Application of the competitive antagonist 2′,3′- O -(2,4,6-trinitrophenyl)-ATP (TNP-ATP) resulted in large fluorescence changes with the N120C, E122C, and G123C mutants and minor or no changes with the other mutants. Likewise, TNP-ATP–induced changes in control mutants distant from the proposed ATP binding site were comparably small or absent. Combined with molecular modeling studies, our data confirm the proposed ATP binding site and provide evidence that ATP orients in its binding site with the ribose moiety facing the solution. We also conclude that P2XR activation and desensitization involve movements of the cysteine-rich head domain.