Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
321
result(s) for
"Barrera, Roberto"
Sort by:
Therapeutic vascularization in regenerative medicine
by
Burger, Maximilian G.
,
Gürke, Lorenz
,
Banfi, Andrea
in
Angiogenesis
,
Concise Review
,
Concise Reviews
2020
Therapeutic angiogenesis, that is, the generation of new vessels by delivery of specific factors, is required both for rapid vascularization of tissue‐engineered constructs and to treat ischemic conditions. Vascular endothelial growth factor (VEGF) is the master regulator of angiogenesis. However, uncontrolled expression can lead to aberrant vascular growth and vascular tumors (angiomas). Major challenges to fully exploit VEGF potency for therapy include the need to precisely control in vivo distribution of growth factor dose and duration of expression. In fact, the therapeutic window of VEGF delivery depends on its amount in the microenvironment around each producing cell rather than on the total dose, since VEGF remains tightly bound to extracellular matrix (ECM). On the other hand, short‐term expression of less than about 4 weeks leads to unstable vessels, which promptly regress following cessation of the angiogenic stimulus. Here, we will briefly overview some key aspects of the biology of VEGF and angiogenesis and discuss their therapeutic implications with a particular focus on approaches using gene therapy, genetically modified progenitors, and ECM engineering with recombinant factors. Lastly, we will present recent insights into the mechanisms that regulate vessel stabilization and the switch between normal and aberrant vascular growth after VEGF delivery, to identify novel molecular targets that may improve both safety and efficacy of therapeutic angiogenesis. Therapeutic angiogenesis, that is, the generation of new blood vessels by delivery of specific factors, is required both for rapid vascularization of tissue‐engineered constructs and to treat ischemic conditions. A better understanding of the physiological mechanisms of vascular growth is important to exploit its therapeutic potential and for the rational design of cell, gene, and protein therapy approaches.
Journal Article
Population Dynamics of Aedes aegypti and Dengue as Influenced by Weather and Human Behavior in San Juan, Puerto Rico
by
MacKay, Andrew J.
,
Amador, Manuel
,
Barrera, Roberto
in
Aedes - growth & development
,
Aedes - physiology
,
Animals
2011
Previous studies on the influence of weather on Aedes aegypti dynamics in Puerto Rico suggested that rainfall was a significant driver of immature mosquito populations and dengue incidence, but mostly in the drier areas of the island. We conducted a longitudinal study of Ae. aegypti in two neighborhoods of the metropolitan area of San Juan city, Puerto Rico where rainfall is more uniformly distributed throughout the year. We assessed the impacts of rainfall, temperature, and human activities on the temporal dynamics of adult Ae. aegypti and oviposition. Changes in adult mosquitoes were monitored with BG-Sentinel traps and oviposition activity with CDC enhanced ovitraps. Pupal surveys were conducted during the drier and wetter parts of the year in both neighborhoods to determine the contribution of humans and rains to mosquito production. Mosquito dynamics in each neighborhood was compared with dengue incidence in their respective municipalities during the study. Our results showed that: 1. Most pupae were produced in containers managed by people, which explains the prevalence of adult mosquitoes at times when rainfall was scant; 2. Water meters were documented for the first time as productive habitats for Ae. aegypti; 3. Even though Puerto Rico has a reliable supply of tap water and an active tire recycling program, water storage containers and discarded tires were important mosquito producers; 4. Peaks in mosquito density preceded maximum dengue incidence; and 5. Ae. aegypti dynamics were driven by weather and human activity and oviposition was significantly correlated with dengue incidence.
Journal Article
Improving the Safety and Acceptability of Autocidal Gravid Ovitraps (AGO Traps)
by
Acevedo, Veronica
,
Amador, Manuel
,
Barrera, Roberto
in
Acceptability
,
Accident prevention
,
Accidental release
2021
Gravid traps that collect eggs or adult mosquitoes use color, size, or volume as well as water or plant infusions as attractants. Biorational larvicides have been used to prevent these devices from producing adult mosquitoes within the traps. Results from field assays on the use of several biorational larvicides for various mosquito species have provided mixed results in terms of increased, neutral, or reduced attraction. We investigated the use of Bacillus thuringiensis var. israelensis , spinosad, and novaluron in field assays in Puerto Rico to evaluate the behavioral response of Aedes aegypti and Culex spp. to autocidal gravid ovitraps (AGO traps). The purpose of the study was to increase the safety of these traps by preventing accidental release of adult mosquitoes when traps are opened or damaged. We also investigated whether trap color (blue, green, terracotta) that may be more amenable for use by residents in their properties induced a similar attraction response to the original black trap color. We found that the use of biorational larvicides did not significantly change the behavioral attraction of these mosquito species to AGO traps. For Ae. aegypti , green traps yielded the lowest captures while black, terracotta, and blue produced similar higher yields. Culex spp. in black traps showed significantly higher captures compared with other colors. These results suggest that black, terracotta, or blue AGO traps can be used for the surveillance and control of Ae. aegypti .
Journal Article
Pyrethroid insecticides maintain repellent effect on knock-down resistant populations of Aedes aegypti mosquitoes
2018
Pyrethroid-treated clothing is commonly worn for protection against mosquitoes; pyrethroids are both insecticides and repellents. Pyrethroid resistance has become increasingly common in Aedes aegypti, the vector of dengue, Zika, and other arboviruses, but it is not clear whether resistance is associated with reductions in repellency. In order to determine whether long-lasting permethrin impregnated (LLPI) clothing is protective, we used Aedes aegypti from New Orleans, LA (pyrethroid-sensitive) and San Juan, PR (resistant) to measure both lethality and repellency. PCR and Sanger sequencing were used to confirm resistance status by detecting mutations in the kdr gene at positions 1016 and 1534. Arm-in-cage trials of 100 Aedes aegypti females from both populations were performed for 10 minutes to bare arm or an arm clothed in untreated military camouflage or military camouflage impregnated with deltamethrin, permethrin, or etofenprox. Trials were repeated 4-5 times on different days. Number of landings, number of blood meals, and immediate and 24-hour mortality were recorded. Mortality was extremely low in all trials. Compared to untreated cloth, mosquitoes demonstrated a trend towards a 2%-63% reduction in landings and a statistically significant 78-100% reduction in blood feeding on pyrethroid-treated cloth for most insecticides. Effects were observed in both pyrethroid-sensitive and pyrethroid-resistant mosquito populations. Our data show that kdr mutations are associated with pyrethroid resistance but are likely not the only contributors. Pyrethroids appear to maintain repellent effect against resistant mosquitoes. This finding suggests that even in places where pyrethroid resistance is widespread, permethrin still has a role for use as a repellent on clothing to protect against mosquito bites.
Journal Article
Entomological survey to determine the role of cisterns in the production of Aedes aegypti in the U.S. Virgin Islands
by
Saavedra-Hernández, Rafael
,
Burgos, Eduardo
,
Hemme, Ryan
in
Adults
,
Aedes - growth & development
,
Aedes aegypti
2025
Given the limited potable water supply in the U.S. Virgin Islands, most residents use cisterns to collect rainwater and store it for their daily needs. A survey conducted in 2019 found that 45.7% of the cisterns contained mosquitoes, and 83.3% of the mosquitoes collected were Aedes aegypti , suggesting an important role as mosquito larval development sites. A subsequent entomological survey was designed to determine the importance of cisterns in producing Ae. aegypti mosquitoes and to understand the cistern factors and characteristics that influence productivity. Three floating funnel traps were installed inside each sampled cistern to collect immature mosquitoes, and exit traps were installed on the intake spouts and overflow pipes, when possible, to collect adult mosquitoes. Physical and chemical characteristics were also recorded. Yard and outdoor patio inspections were conducted at participating households to identify other types of containers with immature mosquitoes. A total of 1,858 households were visited, of which 24% granted access to their cisterns for this study. Of these, 76% of cisterns met protocol criteria, which resulted in 342 cisterns being sampled. Approximately half of the cisterns surveyed were positive for immature mosquitoes. A higher percentage was observed on the St. Thomas and St. John islands (STT District, 57.3%) than St. Croix (STX District, 40.9%). Most immature mosquitoes collected were Ae. aegypti (89.2%), followed by Culex spp . (1.3%), and Ae. mediovittatus (0.38%). Pupal surveys revealed that cisterns were the second highest contributor to the production of Ae. aegypti pupae, with 16.9% of the pupae collected from cisterns. However, this number might be underestimated given sampling limitations. Buckets were the highest Ae. aegypti pupal producer with 47.3%. On average, 5.8% of the exit traps installed on cisterns captured adult mosquitoes, with higher rates of capture on the STT district than on the STX (6.4% versus 5.3%, respectively). Most adult mosquitoes collected (90.7%) were identified as Ae. aegypti, while the other 9.2% were Culex spp . We can conclude that cisterns are important larval development sites for Ae. aegypti and vector management strategies must be developed to reduce their impact.
Journal Article
Dengue Outbreak in Mombasa City, Kenya, 2013–2014: Entomologic Investigations
by
Owaka, Samuel
,
Sang, Rosemary
,
Koskei, Edith
in
Aedes - physiology
,
Aedes - virology
,
Animals
2016
Dengue outbreaks were first reported in East Africa in the late 1970s to early 1980s including the 1982 outbreak on the Kenyan coast. In 2011, dengue outbreaks occurred in Mandera in northern Kenya and subsequently in Mombasa city along the Kenyan coast in 2013-2014. Following laboratory confirmation of dengue fever cases, an entomologic investigation was conducted to establish the mosquito species, and densities, causing the outbreak. Affected parts of the city were identified with the help of public health officials. Adult Ae. aegypti mosquitoes were collected using various tools, processed and screened for dengue virus (DENV) by cell culture and RT-PCR. All containers in every accessible house and compound within affected suburbs were inspected for immatures. A total of 2,065 Ae. aegypti adults were collected and 192 houses and 1,676 containers inspected. An overall house index of 22%, container index, 31.0% (indoor = 19; outdoor = 43) and Breteau index, 270.1, were observed, suggesting that the risk of dengue transmission was high. Overall, jerry cans were the most productive containers (18%), followed by drums (17%), buckets (16%), tires (14%) and tanks (10%). However, each site had specific most-productive container-types such as tanks (17%) in Kizingo; Drums in Nyali (30%) and Changamwe (33%), plastic basins (35%) in Nyali-B and plastic buckets (81%) in Ganjoni. We recommend that for effective control of the dengue vector in Mombasa city, all container types would be targeted. Measures would include proper covering of water storage containers and eliminating discarded containers outdoors through a public participatory environmental clean-up exercise. Providing reliable piped water to all households would minimize the need for water storage and reduce aquatic habitats. Isolation of DENV from male Ae. aegypti mosquitoes is a first observation in Kenya and provides further evidence that transovarial transmission may have a role in DENV circulation and/or maintenance in the environment.
Journal Article
Integrated vector control of Aedes aegypti mosquitoes around target houses
by
Amador, Manuel
,
Acevedo, Veronica
,
Munoz, Jorge
in
Aedes - classification
,
Aedes - genetics
,
Aedes - growth & development
2018
Background
The developing fetuses of pregnant women are at high risk of developing serious birth defects following Zika virus infections. We applied an Integrated Vector Control (IVC) approach using source reduction, larviciding, and mass trapping with non-insecticidal sticky traps to protect targeted houses by reducing the density of female
Aedes aegypti
mosquitoes.
Methods
We tested the hypothesis that
Ae. aegypti
density could be reduced to below three female mosquitoes/trap/week around a target house in the center of a circular area with a 150 m radius using IVC. Two non-adjacent areas within the same neighbourhood were selected and randomly designated as the treatment or control areas. Sentinel Autocidal Gravid Ovitraps (SAGO traps) were placed in each study area and were sampled weekly from May to November, during the 2016 Zika epidemic in Puerto Rico. The experimental design was longitudinal with pre-and post-IVC treatment observations between treatment and control areas, and a partial cross-over design, where IVC was applied to the original control area after 2 months to determine if
Ae. aegypti
density converged to levels observed in the treatment area. Pools of female
Ae. aegypti
mosquitoes were analyzed by RT-PCR to detect Zika, dengue and chikungunya virus RNA.
Results
Overall, pre-treatment mosquito densities in the inner (0–50 m; 15.6 mosquitoes/trap/week), intermediate (50–100 m; 18.1) and outer rings (100–150 m; 15.6) were reduced after treatment to 2.8, 4.1, and 4.3 in the inner, middle, and outer rings, respectively. Density at the target house in the treatment area changed from 27.7 mosquitoes/trap/week before IVC to 2.1 after IVC (92.4% reduction), whereas after treating the original control area (cross-over) density changed from 22.4 to 3.5 (84.3% reduction). Vector reductions were sustained in both areas after IVC. Zika virus was detected in
Ae. aegypti
, but the low incidence of the virus precluded assessing the impact of IVC on Zika transmission during the study.
Conclusions
Applying IVC to circular areas that were surrounded by untreated areas significantly decreased the number of mosquitoes around target houses located in the center. Gravid
Ae. aegypti
females in the center of the 150 m areas fell below threshold levels that possibly protect against novel invading arboviruses, such as chikungunya and Zika.
Journal Article
Factors Modulating Captures of Gravid Aedes aegypti Females
2020
To improve detection and assessment of Aedes aegypti abundance, we investigated whether microhabitat factors of the location of autocidal gravid ovitraps (AGO traps) influenced captures of gravid females in 2 locations in southern Puerto Rico. One location had been under vector control for several years using mass AGO trapping (intervention site), where Ae. aegypti abundance was several times lower than in the other study site without mosquito control (nonintervention site). We observed 10 environmental factors describing trap microhabitat location, and monitored water volume and minimum, maximum, and average temperature in AGO traps. Air temperature, relative humidity, and rainfall were recorded at each site. We conducted a hot-spot analysis of AGO traps to understand whether trap captures were influenced by the local abundance of mosquitoes rather than or in addition to trap microhabitat factors. AGO traps were classified using a 2-step cluster analysis based on attributes of trap microhabitats, water temperature, and water volume. Captures of female Ae. aegypti in each cluster per site were compared between resulting clusters to determine whether trap microhabitat factors defining the clusters were associated with trap captures. Trap captures in both study sites were mostly correlated with captures in nearby traps regardless of trap microhabitat factors, possibly reflecting the influence of the spatial aggregation of mosquitoes coming from nearby aquatic habitats or the concentration of dispersing adults. These results indicated that AGO traps can be located at places that can be easily reached during periodic inspections, such as in front of houses, without much regard to local microhabitat conditions.
Journal Article
Meteorologically Driven Simulations of Dengue Epidemics in San Juan, PR
by
Ernst, Kacey
,
Monaghan, Andrew J.
,
Morin, Cory W.
in
Aedes aegypti
,
Cities
,
Computer Simulation
2015
Meteorological factors influence dengue virus ecology by modulating vector mosquito population dynamics, viral replication, and transmission. Dynamic modeling techniques can be used to examine how interactions among meteorological variables, vectors and the dengue virus influence transmission. We developed a dengue fever simulation model by coupling a dynamic simulation model for Aedes aegypti, the primary mosquito vector for dengue, with a basic epidemiological Susceptible-Exposed-Infectious-Recovered (SEIR) model. Employing a Monte Carlo approach, we simulated dengue transmission during the period of 2010-2013 in San Juan, PR, where dengue fever is endemic. The results of 9600 simulations using varied model parameters were evaluated by statistical comparison (r2) with surveillance data of dengue cases reported to the Centers for Disease Control and Prevention. To identify the most influential parameters associated with dengue virus transmission for each period the top 1% of best-fit model simulations were retained and compared. Using the top simulations, dengue cases were simulated well for 2010 (r2 = 0.90, p = 0.03), 2011 (r2 = 0.83, p = 0.05), and 2012 (r2 = 0.94, p = 0.01); however, simulations were weaker for 2013 (r2 = 0.25, p = 0.25) and the entire four-year period (r2 = 0.44, p = 0.002). Analysis of parameter values from retained simulations revealed that rain dependent container habitats were more prevalent in best-fitting simulations during the wetter 2010 and 2011 years, while human managed (i.e. manually filled) container habitats were more prevalent in best-fitting simulations during the drier 2012 and 2013 years. The simulations further indicate that rainfall strongly modulates the timing of dengue (e.g., epidemics occurred earlier during rainy years) while temperature modulates the annual number of dengue fever cases. Our results suggest that meteorological factors have a time-variable influence on dengue transmission relative to other important environmental and human factors.
Journal Article
Monitoring Dengue Virus in Aedes aegypti to Improve Dengue Surveillance and Control in Puerto Rico
by
Rivera, Reinaldo
,
Torres, Jomil
,
Maldonado, Yashira
in
Aedes - virology
,
Aedes aegypti
,
Animals
2025
Aedes aegypti is the primary urban vector for several important arboviruses, including dengue, chikungunya, yellow fever, and Zika viruses. Traditional dengue virus (DENV) surveillance relies on passive reporting of human cases, which often underestimates transmission due to asymptomatic or unreported infections. This study evaluated the utility of monitoring DENV in Ae. aegypti mosquitoes to improve detection of local dengue transmission and inform vector control strategies during the 2024 dengue epidemic in Puerto Rico. Mosquito surveillance was conducted in 15 neighborhoods within the San Juan metropolitan area where confirmed dengue cases had been recently reported. Adult female Ae. aegypti were collected weekly using Autocidal Gravid Ovitraps (AGO traps) placed within a 200 m radius of index cases. Pools of 1–20 mosquitoes were tested for DENV RNA and serotype using RT-PCR. Surveillance continued for up to 91 days in study areas, depending on virus detection. A total of 29,354 female Ae. aegypti were collected, of which 29,211 females were pooled (1–20 specimens per pool) into 3878 pools and analyzed. DENV was detected in 49 pools across 11 neighborhoods, with serotypes DENV-1, DENV-2, and DENV-3 identified. Multiple serotypes were sometimes detected in mosquitoes from the same neighborhood. Minimum infection rates and vector indices were higher during the epidemic than in previous inter-epidemic periods, and mosquito densities exceeded thresholds considered protective against outbreaks. Entomo-virological surveillance detected a greater variety and evenness of serotypes than passive human surveillance. These findings suggest that entomo-virological surveillance can complement passive case surveillance, providing a more comprehensive detection of DENV circulation. Integrating mosquito-based and human surveillance can improve outbreak detection, guide vector control, and aid in reducing dengue burden in affected communities.
Journal Article