Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
LanguageLanguage
-
SubjectSubject
-
Item TypeItem Type
-
DisciplineDiscipline
-
YearFrom:-To:
-
More FiltersMore FiltersIs Peer Reviewed
Done
Filters
Reset
14,789
result(s) for
"Barrett, David A."
Sort by:
A low FODMAP diet is associated with changes in the microbiota and reduction in breath hydrogen but not colonic volume in healthy subjects
2018
Ingestion of poorly digested, fermentable carbohydrates (fermentable oligo-, di-, mono-saccharides and polyols; FODMAPs) have been implicated in exacerbating intestinal symptoms and the reduction of intake with symptom alleviation. Restricting FODMAP intake is believed to relieve colonic distension by reducing colonic fermentation but this has not been previously directly assessed. We performed a randomised controlled trial comparing the effect of a low FODMAP diet combined with either maltodextrin or oligofructose on colonic contents, metabolites and microbiota.
A parallel randomised controlled trial in healthy adults (n = 37). All subjects followed a low FODMAP diet for a week and supplemented their diet with either maltodextrin (MD) or oligofructose (OF) 7g twice daily. Fasted assessments performed pre- and post-diet included MRI to assess colonic volume, breath testing for hydrogen and methane, and stool collection for microbiota analysis.
The low FODMAP diet was associated with a reduction in Bifidobacterium and breath hydrogen, which was reversed by oligofructose supplementation. The difference in breath hydrogen between groups post-intervention was 27ppm (95% CI 7 to 50, P<0.01). Colonic volume increased significantly from baseline in both groups (OF increased 110ml (19.6%), 95% CI 30ml to 190ml, P = 0.01; MD increased 90ml (15.5%), 95% CI 6ml to 175ml, P = 0.04) with no significant difference between them. Colonic volumes correlated with total breath hydrogen + methane. A divergence in Clostridiales abundance was observed with increased abundance of Ruminococcaceae in the maltodextrin group, while in the oligofructose group, Lachnospiraceae decreased. Subjects in either group with high methane production also tended to have high microbial diversity, high colonic volume and greater abundance of methanogens.
A low FODMAP diet reduces total bacterial count and gas production with little effect on colonic volume.
Journal Article
Transient Exposure to Low Levels of Insecticide Affects Metabolic Networks of Honeybee Larvae
2013
The survival of a species depends on its capacity to adjust to changing environmental conditions, and new stressors. Such new, anthropogenic stressors include the neonicotinoid class of crop-protecting agents, which have been implicated in the population declines of pollinating insects, including honeybees (Apis mellifera). The low-dose effects of these compounds on larval development and physiological responses have remained largely unknown. Over a period of 15 days, we provided syrup tainted with low levels (2 µg/L(-1)) of the neonicotinoid insecticide imidacloprid to beehives located in the field. We measured transcript levels by RNA sequencing and established lipid profiles using liquid chromatography coupled with mass spectrometry from worker-bee larvae of imidacloprid-exposed (IE) and unexposed, control (C) hives. Within a catalogue of 300 differentially expressed transcripts in larvae from IE hives, we detect significant enrichment of genes functioning in lipid-carbohydrate-mitochondrial metabolic networks. Myc-involved transcriptional response to exposure of this neonicotinoid is indicated by overrepresentation of E-box elements in the promoter regions of genes with altered expression. RNA levels for a cluster of genes encoding detoxifying P450 enzymes are elevated, with coordinated downregulation of genes in glycolytic and sugar-metabolising pathways. Expression of the environmentally responsive Hsp90 gene is also reduced, suggesting diminished buffering and stability of the developmental program. The multifaceted, physiological response described here may be of importance to our general understanding of pollinator health. Muscles, for instance, work at high glycolytic rates and flight performance could be impacted should low levels of this evolutionarily novel stressor likewise induce downregulation of energy metabolising genes in adult pollinators.
Journal Article
Unfractionated heparin reverses aspirin inhibition of platelets during coronary artery bypass graft surgery
by
Sander, Katrin N.
,
Murphy, Gavin J.
,
Goodall, Alison H.
in
631/443/1338/1339
,
692/4019/592/1339
,
692/4019/592/75
2024
Unfractionated heparin (UFH) is an effective antithrombotic during surgery but has known adverse effects, in particular on platelets. A marked increase in platelet responsiveness has previously been observed in patients within minutes of receiving UFH, despite adequate inhibition by aspirin prior to heparin. We studied this phenomenon in patients undergoing cardiac artery bypass grafting (n = 17) to determine whether the effects of heparin were systemic or platelet-specific. All patients’ platelets were fully inhibited by aspirin prior to surgery, but within 3 min of receiving heparin spontaneous aggregation and responses to arachidonic acid (AA) and ADP increased significantly (p ≥ 0.0002), and activated platelets were found in the circulation. While there was no rise in thromboxane in the plasma following heparin, levels of the major platelet 12-lipoxygenase product, 12-HETE, rose significantly. Mixing experiments demonstrated that the changes caused by heparin resided primarily in the platelets, while addition of AA pathway inhibitors, and analysis of oxylipins provided evidence that, following heparin, aggregating platelets regained their ability to synthesise thromboxane. These findings highlight potentially unrecognised pro-thrombotic and pro-inflammatory changes during CABG surgery, and provide further evidence of adverse effects associated with UFH.
Journal Article
Interspecific Variation in One-Carbon Metabolism within the Ovarian Follicle, Oocyte, and Preimplantation Embryo: Consequences for Epigenetic Programming of DNA Methylation
by
Clare, Constance E.
,
Xu, Juan
,
Barrett, David A.
in
Animals
,
Blastocyst - metabolism
,
Carbon - metabolism
2021
One-carbon (1C) metabolism provides methyl groups for the synthesis and/or methylation of purines and pyrimidines, biogenic amines, proteins, and phospholipids. Our understanding of how 1C pathways operate, however, pertains mostly to the (rat) liver. Here we report that transcripts for all bar two genes (i.e., BHMT, MAT1A) encoding enzymes in the linked methionine-folate cycles are expressed in all cell types within the ovarian follicle, oocyte, and blastocyst in the cow, sheep, and pig; as well as in rat granulosa cells (GCs) and human KGN cells (a granulosa-like tumor cell line). Betaine-homocysteine methyltransferase (BHMT) protein was absent in bovine theca and GCs, as was activity of this enzyme in GCs. Mathematical modeling predicted that absence of this enzyme would lead to more volatile S-adenosylmethionine-mediated transmethylation in response to 1C substrate (e.g., methionine) or cofactor provision. We tested the sensitivity of bovine GCs to reduced methionine (from 50 to 10 µM) and observed a diminished flux of 1C units through the methionine cycle. We then used reduced-representation bisulfite sequencing to demonstrate that this reduction in methionine during bovine embryo culture leads to genome-wide alterations to DNA methylation in >1600 genes, including a cohort of imprinted genes linked to an abnormal fetal-overgrowth phenotype. Bovine ovarian and embryonic cells are acutely sensitive to methionine, but further experimentation is required to determine the significance of interspecific variation in BHMT expression.
Journal Article
Physicochemical and metabolic constraints for thermodynamics-based stoichiometric modelling under mesophilic growth conditions
by
King, John
,
University of Nottingham's School of Life Sciences
,
Tomi-Andrino, Claudio
in
Amino acids
,
Balancing
,
Biochemistry, Molecular Biology
2021
Metabolic engineering in the post-genomic era is characterised by the development of new methods for metabolomics and fluxomics, supported by the integration of genetic engineering tools and mathematical modelling. Particularly, constraint-based stoichiometric models have been widely studied: (i) flux balance analysis (FBA) (in silico), and (ii) metabolic flux analysis (MFA) (in vivo). Recent studies have enabled the incorporation of thermodynamics and metabolomics data to improve the predictive capabilities of these approaches. However, an in-depth comparison and evaluation of these methods is lacking. This study presents a thorough analysis of two different in silico methods tested against experimental data (metabolomics and C-13-MFA) for the mesophile Escherichia coli. In particular, a modified version of the recently published matTFA toolbox was created, providing a broader range of physicochemical parameters. Validating against experimental data allowed the determination of the best physicochemical parameters to perform the TFA (Thermodynamics-based Flux Analysis). An analysis of flux pattern changes in the central carbon metabolism between C-13-MFA and TFA highlighted the limited capabilities of both approaches for elucidating the anaplerotic fluxes. In addition, a method based on centrality measures was suggested to identify important metabolites that (if quantified) would allow to further constrain the TFA. Finally, this study emphasised the need for standardisation in the fluxomics community: novel approaches are frequently released but a thorough comparison with currently accepted methods is not always performed.Author summaryBiotechnology has benefitted from the development of high throughput methods characterising living systems at different levels (e.g. concerning genes or proteins), allowing the industrial production of chemical commodities. Recently, focus has been placed on determining reaction rates (or metabolic fluxes) in the metabolic network of certain microorganisms, in order to identify bottlenecks hindering their exploitation. Two main approaches are commonly used, termed metabolic flux analysis (MFA) and flux balance analysis (FBA), based on measuring and estimating fluxes, respectively. While the influence of thermodynamics in living systems was accepted several decades ago, its application to study biochemical networks has only recently been enabled. In this sense, a multitude of different approaches constraining well-established modelling methods with thermodynamics has been suggested. However, physicochemical parameters are generally not properly adjusted to the experimental conditions, which might affect their predictive capabilities. In this study, we have explored the reliability of currently available tools by investigating the impact of varying said parameters in the simulation of metabolic fluxes and metabolite concentration values. Additionally, our in-depth analysis allowed us to highlight limitations and potential solutions that should be considered in future studies.
Journal Article
An Analysis of Endocannabinoid Concentrations and Mood Following Singing and Exercise in Healthy Volunteers
2018
The euphoric feeling described after running is, at least in part, due to increased circulating endocannabinoids (eCBs). eCBs are lipid signaling molecules involved in reward, appetite, mood, memory and neuroprotection. The aim of this study was to investigate whether activities other than running can increase circulating eCBs. Nine healthy female volunteers (mean 61 years) were recruited from a local choir. Circulating eCBs, haemodynamics, mood and hunger ratings were measured before and immediately after 30 min of dance, reading, singing or cycling in a fasted state. Singing increased plasma levels of anandamide (AEA) by 42% (
< 0.05), palmitoylethanolamine (PEA) by 53% (
< 0.01) and oleoylethanolamine (OEA) by 34% (
< 0.05) and improved positive mood and emotions (
< 0.01), without affecting hunger scores. Dancing did not affect eCB levels or hunger ratings, but decreased negative mood and emotions (
< 0.01). Cycling increased OEA levels by 26% (
< 0.05) and tended to decrease how hungry volunteers felt, without affecting mood. Reading increased OEA levels by 28% (
< 0.01) and increased the desire to eat. Plasma AEA levels were positively correlated with how full participants felt (
< 0.05). Plasma OEA levels were positively correlated with positive mood and emotions (
< 0.01). All three ethanolamines were positively correlated with heart rate (HR;
< 0.0001). These data suggest that activities other than running can increase plasma eCBs associated with changes in mood or appetite. Increases in eCBs may underlie the rewarding and pleasurable effects of singing and exercise and ultimately some of the long-term beneficial effects on mental health, cognition and memory.
Journal Article
Inclusion of Medium-Chain Triglyceride in Lipid-Based Formulation of Cannabidiol Facilitates Micellar Solubilization In Vitro, but In Vivo Performance Remains Superior with Pure Sesame Oil Vehicle
2021
Oral sesame oil-based formulation facilitates the delivery of poorly water-soluble drug cannabidiol (CBD) to the lymphatic system and blood circulation. However, this natural oil-based formulation also leads to considerable variability in absorption of CBD. In this work, the performance of lipid-based formulations with the addition of medium-chain triglyceride (MCT) or surfactants to the sesame oil vehicle has been tested in vitro and in vivo using CBD as a model drug. The in vitro lipolysis has shown that addition of the MCT leads to a higher distribution of CBD into the micellar phase. Further addition of surfactants to MCT-containing formulations did not improve distribution of the drug into the micellar phase. In vivo, formulations containing MCT led to lower or similar concentrations of CBD in serum, lymph and MLNs, but with reduced variability. MCT improves the emulsification and micellar solubilization of CBD, but surfactants did not facilitate further the rate and extent of lipolysis. Even though addition of MCT reduces the variability, the in vivo performance for the extent of both lymphatic transport and systemic bioavailability remains superior with a pure natural oil vehicle.
Journal Article
A metabolomic analytical approach permits identification of urinary biomarkers for Plasmodium falciparum infection: a case–control study
by
Mulleta, Dhaba
,
Amberbir, Alemayehu
,
Deressa, Wakgari
in
Adolescent
,
Adult
,
Antimalarials - therapeutic use
2017
Background
Currently available diagnostic techniques of
Plasmodium falciparum
infection are not optimal for non-invasive, population-based screening for malaria. It was hypothesized that a mass spectrometry-based metabolomics approach could identify urinary biomarkers of falciparum malaria.
Methods
The study used a case–control design, with cases consisting of 21 adults in central Ethiopia with a diagnosis of
P. falciparum
infection confirmed with microscopy, and 25 controls of adults with negative blood smears for malaria matched on age and sex. Urinary samples were collected from these individuals during presentation at the clinic, and a second sample was collected from both cases and controls 4 weeks later, after the cases had received anti-malarial medication. The urine samples were screened for small molecule urinary biomarkers, using mass spectrometry-based metabolomics analyses followed by multivariate analysis using principal component analysis and orthogonal partial least square-discriminant analysis. The chemical identity of statistically significant malaria biomarkers was confirmed using tandem mass spectrometry.
Results
The urinary metabolic profiles of cases with
P. falciparum
infection were distinct from healthy controls. After treatment with anti-malarial medication, the metabolomic profile of cases resembled that of healthy controls. Significantly altered levels of 29 urinary metabolites were found. Elevated levels of urinary pipecolic acid, taurine, N-acetylspermidine, N-acetylputrescine and 1,3-diacetylpropane were identified as potential biomarkers of falciparum malaria.
Conclusion
The urinary biomarkers of malaria identified have potential for the development of non-invasive and rapid diagnostic test of
P. falciparum
infection.
Journal Article
Broccoli Consumption Interacts with GSTM1 to Perturb Oncogenic Signalling Pathways in the Prostate
2008
Epidemiological studies suggest that people who consume more than one portion of cruciferous vegetables per week are at lower risk of both the incidence of prostate cancer and of developing aggressive prostate cancer but there is little understanding of the underlying mechanisms. In this study, we quantify and interpret changes in global gene expression patterns in the human prostate gland before, during and after a 12 month broccoli-rich diet.
Volunteers were randomly assigned to either a broccoli-rich or a pea-rich diet. After six months there were no differences in gene expression between glutathione S-transferase mu 1 (GSTM1) positive and null individuals on the pea-rich diet but significant differences between GSTM1 genotypes on the broccoli-rich diet, associated with transforming growth factor beta 1 (TGFbeta1) and epidermal growth factor (EGF) signalling pathways. Comparison of biopsies obtained pre and post intervention revealed more changes in gene expression occurred in individuals on a broccoli-rich diet than in those on a pea-rich diet. While there were changes in androgen signalling, regardless of diet, men on the broccoli diet had additional changes to mRNA processing, and TGFbeta1, EGF and insulin signalling. We also provide evidence that sulforaphane (the isothiocyanate derived from 4-methylsuphinylbutyl glucosinolate that accumulates in broccoli) chemically interacts with TGFbeta1, EGF and insulin peptides to form thioureas, and enhances TGFbeta1/Smad-mediated transcription.
These findings suggest that consuming broccoli interacts with GSTM1 genotype to result in complex changes to signalling pathways associated with inflammation and carcinogenesis in the prostate. We propose that these changes may be mediated through the chemical interaction of isothiocyanates with signalling peptides in the plasma. This study provides, for the first time, experimental evidence obtained in humans to support observational studies that diets rich in cruciferous vegetables may reduce the risk of prostate cancer and other chronic disease.
ClinicalTrials.gov NCT00535977.
Journal Article
Plasma-Lyte 148 and Plasma-Lyte 148 + 5% glucose compatibility with commonly used critical care drugs
by
Wignell, Andrew
,
Barrett, David A
,
Cooling, Paul
in
Drug interactions
,
Glucose
,
Intensive care
2020
PurposePlasma-Lyte is a balanced, crystalloid intravenous fluid which has been shown to avoid the hyperchloremic metabolic acidosis associated with 0.9% sodium chloride. Data on physical, pH and chemical compatibility with other medicines are essential.MethodsThe compatibility of adrenaline, dobutamine, dopamine, furosemide, midazolam, morphine and milrinone with Plasma-Lyte 148 (PLA) and Plasma-Lyte 148 with 5% glucose (PLA-G) was investigated. Control solutions were 0.9% sodium chloride and 5% glucose. Chemical stability was defined as < 5% concentration change with high-performance liquid chromatography (HPLC). Physical compatibility was assessed by checking for colour changes and precipitate formation. The pH of the admixtures was considered acceptable if between 5 and 9 at all time points. Six repeats were carried out for HPLC, 2 for physical compatibility checks and pH measurements, with all admixtures being tested at 0, 2 and 24 h after mixing.ResultsAll combinations were found to be chemically stable at 0, 2 and 24 h apart from furosemide with PLA-G at 24 h and midazolam with PLA or PLA-G at both 2 and 24 h. Only midazolam was physically incompatible when mixed with both Plasma-Lyte solutions. The pH remained stable in all admixtures, although not all pH values recorded were within the range of 5–9.ConclusionAll drugs excluding furosemide and midazolam were shown to be chemically, physically and pH stable at the tested concentrations when diluted with PLA and PLA-G.
Journal Article