Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
26 result(s) for "Barron, Helen C."
Sort by:
Repetition suppression: a means to index neural representations using BOLD?
Understanding how the human brain gives rise to complex cognitive processes remains one of the biggest challenges of contemporary neuroscience. While invasive recording in animal models can provide insight into neural processes that are conserved across species, our understanding of cognition more broadly relies upon investigation of the human brain itself. There is therefore an imperative to establish non-invasive tools that allow human brain activity to be measured at high spatial and temporal resolution. In recent years, various attempts have been made to refine the coarse signal available in functional magnetic resonance imaging (fMRI), providing a means to investigate neural activity at the meso-scale, i.e. at the level of neural populations. The most widely used techniques include repetition suppression and multivariate pattern analysis. Human neuroscience can now use these techniques to investigate how representations are encoded across neural populations and transformed by relevant computations. Here, we review the physiological basis, applications and limitations of fMRI repetition suppression with a brief comparison to multivariate techniques. By doing so, we show how fMRI repetition suppression holds promise as a tool to reveal complex neural mechanisms that underlie human cognitive function. This article is part of the themed issue ‘Interpreting BOLD: a dialogue between cognitive and cellular neuroscience’.
Inhibitory engrams in perception and memory
Nervous systems use excitatory cell assemblies to encode and represent sensory percepts. Similarly, synaptically connected cell assemblies or “engrams” are thought to represent memories of past experience. Multiple lines of recent evidence indicate that brain systems create and use inhibitory replicas of excitatory representations for important cognitive functions. Such matched “inhibitory engrams” can form through homeostatic potentiation of inhibition onto postsynaptic cells that show increased levels of excitation. Inhibitory engrams can reduce behavioral responses to familiar stimuli, thereby resulting in behavioral habituation. In addition, by preventing inappropriate activation of excitatory memory engrams, inhibitory engrams can make memories quiescent, stored in a latent form that is available for context-relevant activation. In neural networks with balanced excitatory and inhibitory engrams, the release of innate responses and recall of associative memories can occur through focused disinhibition. Understanding mechanisms that regulate the formation and expression of inhibitory engrams in vivo may help not only to explain key features of cognition but also to provide insight into transdiagnostic traits associated with psychiatric conditions such as autism, schizophrenia, and posttraumatic stress disorder.
Online evaluation of novel choices by simultaneous representation of multiple memories
This study used fMRI repetition suppression to demonstrate that human subjects can represent and evaluate novel choice options by invoking multiple memories for previous experiences in hippocampus and medial prefrontal cortex. Prior experience is critical for decision-making. It enables explicit representation of potential outcomes and provides training to valuation mechanisms. However, we can also make choices in the absence of prior experience by merely imagining the consequences of a new experience. Using functional magnetic resonance imaging repetition suppression in humans, we examined how neuronal representations of novel rewards can be constructed and evaluated. A likely novel experience was constructed by invoking multiple independent memories in hippocampus and medial prefrontal cortex. This construction persisted for only a short time period, during which new associations were observed between the memories for component items. Together, these findings suggest that, in the absence of direct experience, coactivation of multiple relevant memories can provide a training signal to the valuation system that allows the consequences of new experiences to be imagined and acted on.
Event-related functional magnetic resonance spectroscopy
•Recent advances in MRS now allow for event-related functional MRS, with temporal resolution in the order of seconds.•We provide a user guide for experimental design, data acquisition and analysis considerations for event-related fMRS.•We use simulations to determine optimal settings to detect event-related changes in GABA.•We provide a critical perspective on the appropriate interpretation of event-related fMRS. Proton-Magnetic Resonance Spectroscopy (MRS) is a non-invasive brain imaging technique used to measure the concentration of different neurochemicals. “Single-voxel” MRS data is typically acquired across several minutes, before individual transients are averaged through time to give a measurement of neurochemical concentrations. However, this approach is not sensitive to more rapid temporal dynamics of neurochemicals, including those that reflect functional changes in neural computation relevant to perception, cognition, motor control and ultimately behaviour. In this review we discuss recent advances in functional MRS (fMRS) that now allow us to obtain event-related measures of neurochemicals. Event-related fMRS involves presenting different experimental conditions as a series of trials that are intermixed. Critically, this approach allows spectra to be acquired at a time resolution in the order of seconds. Here we provide a comprehensive user guide for event-related task designs, choice of MRS sequence, analysis pipelines, and appropriate interpretation of event-related fMRS data. We raise various technical considerations by examining protocols used to quantify dynamic changes in GABA, the primary inhibitory neurotransmitter in the brain. Overall, we propose that although more data is needed, event-related fMRS can be used to measure dynamic changes in neurochemicals at a temporal resolution relevant to computations that support human cognition and behaviour.
Memory reactivation generates new, adaptive behaviours that reach beyond direct experience
Periods of rest and sleep help us find hidden solutions to new problems and infer unobserved relationships between discrete events. However, the mechanisms that formulate these new, adaptive behavioural strategies remain unclear. One possibility is that memory reactivation during periods of rest and sleep has the capacity to generate new knowledge that extends beyond direct experience. Here, we test this hypothesis using a pre-registered study design that includes a rich behavioural paradigm in humans. We use contextual Targeted Memory Reactivation (TMR) to causally manipulate memory reactivation during awake rest. We demonstrate that TMR during rest enhances performance on associative memory tests, with improved discovery of new, non-directly trained associations, and no change observed for directly trained associations. Our findings suggest that memory reactivation during awake rest plays a critical role in extracting new, unobserved associations to support adaptive behavioural strategies such as inference.
Memory reactivation during rest forms shortcuts in a cognitive map
Efficient and flexible cognition relies upon cognitive maps—representations of concepts and the relations between them. Cognitive maps integrate relations that were learned separately into a cohesive whole. Memory reactivation during rest and sleep may contribute to cognitive map formation in two ways: by simply strengthening memories for directly experienced relations, or by reorganising concepts and creating new relations that capture the underlying structure. We designed a multi-stage learning task to test whether reactivation during rest is involved in restructuring memories as opposed to simply consolidating what was experienced. We causally manipulated memory reactivation during rest using awake, contextual targeted memory reactivation. We found that promoting memory reactivation during rest qualitatively reorganises the cognitive map by forming ‘shortcuts’ between events which have not been experienced together. These shortcuts in memory extend beyond direct experience to facilitate our ability to make novel inferences. Using a series of control tests we show that inference performance cannot be explained by quantitative strengthening of the experienced component links. Interestingly, we show that representing a shortcut may come with limitations, as shortcuts cannot be readily updated in response to rapid changes in the environment. Together, these findings reveal how memories are reorganised during awake rest to construct a cognitive map of our environment, while highlighting the constraints set by a trade-off between efficient and flexible behaviour.
Memory recall involves a transient break in excitatory-inhibitory balance
The brain has a remarkable capacity to acquire and store memories that can later be selectively recalled. These processes are supported by the hippocampus which is thought to index memory recall by reinstating information stored across distributed neocortical circuits. However, the mechanism that supports this interaction remains unclear. Here, in humans, we show that recall of a visual cue from a paired associate is accompanied by a transient increase in the ratio between glutamate and GABA in visual cortex. Moreover, these excitatory-inhibitory fluctuations are predicted by activity in the hippocampus. These data suggest the hippocampus gates memory recall by indexing information stored across neocortical circuits using a disinhibitory mechanism. Memories are stored by distributed groups of neurons in the brain, with individual neurons contributing to multiple memories. In a part of the brain called the neocortex, memories are held in a silent state through a balance between excitatory and inhibitory activity. This is to prevent them from being disrupted by incoming information. When a memory is recalled, an area of the brain called the hippocampus is thought to instruct the neocortex to activate the appropriate neuronal network. But how the hippocampus and neocortex coordinate their activity to switch memories ‘on’ and ‘off’ is unclear. The answer may lie in the fact that neurons in the neocortex consist of two broad types: excitatory and inhibitory. Excitatory neurons increase the activity of other neurons. They do this by releasing a chemical called glutamate. Inhibitory neurons reduce the activity of other neurons, by releasing a chemical called GABA. Koolschijn, Shpektor et al. hypothesized that the hippocampus activates memories by changing the balance of excitatory and inhibitory activity in neocortex. To test this idea, Koolschijn, Shpektor et al. invited healthy volunteers to explore a virtual reality environment. The volunteers learned that specific sounds in the environment predicted the appearance of particular visual patterns. The next day, the volunteers returned to the environment and viewed these patterns again. After each pattern, they were invited to open a virtual box. Volunteers learned that some patterns led to money in the virtual box, while other patterns did not. Finally, on day three, the volunteers listened to the sounds from day one again, this time while lying in a brain scanner. The volunteers’ task was to infer whether each of the sounds would lead to money. Given that the sounds were never directly paired with the content of the virtual box, the volunteers had to solve the task by recalling the associated visual patterns. As they did so, the brain scanner measured their overall brain activity. It also assessed the relative levels of excitatory and inhibitory activity in visual areas of the neocortex, by measuring glutamate and GABA. The results revealed that as the volunteers recalled the visual cues, activity in both the hippocampus and the visual neocortex increased. Moreover, the ratio of glutamate to GABA in visual neocortex also increased which was predicted by activity in the hippocampus. This suggests that the hippocampus reactivates memories stored in neocortex by temporarily increasing excitatory activity to release memories from inhibitory control. Disturbances in the balance of excitation and inhibition occur in various neuropsychiatric disorders, including schizophrenia, autism, epilepsy and Tourette’s syndrome. Damage to the hippocampus is known to cause amnesia. The current findings suggest that memories may become inaccessible – or may be activated inappropriately – when the interaction between the hippocampus and neocortex goes awry. Future studies could test this possibility in clinical populations.
Cross-species neuroscience: closing the explanatory gap
Neuroscience has seen substantial development in non-invasive methods available for investigating the living human brain. However, these tools are limited to coarse macroscopic measures of neural activity that aggregate the diverse responses of thousands of cells. To access neural activity at the cellular and circuit level, researchers instead rely on invasive recordings in animals. Recent advances in invasive methods now permit large-scale recording and circuit-level manipulations with exquisite spatio-temporal precision. Yet, there has been limited progress in relating these microcircuit measures to complex cognition and behaviour observed in humans. Contemporary neuroscience thus faces an explanatory gap between macroscopic descriptions of the human brain and microscopic descriptions in animal models. To close the explanatory gap, we propose adopting a cross-species approach. Despite dramatic differences in the size of mammalian brains, this approach is broadly justified by preserved homology. Here, we outline a three-armed approach for effective cross-species investigation that highlights the need to translate different measures of neural activity into a common space. We discuss how a cross-species approach has the potential to transform basic neuroscience while also benefiting neuropsychiatric drug development where clinical translation has, to date, seen minimal success. This article is part of the theme issue ‘Key relationships between non-invasive functional neuroimaging and the underlying neuronal activity’.
Impaired inhibitory processing: a new therapeutic target for autism and psychosis?
In the healthy brain, homeostatic balance between excitation and inhibition maintains neural stability. Reduced inhibition may explain shared symptoms observed in autism and psychosis. Here we review evidence suggesting that altered levels of gamma-aminobutyric acid (GABA) may underlie both disorders, providing a potential cross-diagnostic therapeutic target.