Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
101 result(s) for "Barron, Michelle A"
Sort by:
Waning 2-Dose and 3-Dose Effectiveness of mRNA Vaccines Against COVID-19–Associated Emergency Department and Urgent Care Encounters and Hospitalizations Among Adults During Periods of Delta and Omicron Variant Predominance — VISION Network, 10 States, August 2021–January 2022
CDC recommends that all persons aged ≥12 years receive a booster dose of COVID-19 mRNA vaccine ≥5 months after completion of a primary mRNA vaccination series and that immunocompromised persons receive a third primary dose.* Waning of vaccine protection after 2 doses of mRNA vaccine has been observed during the period of the SARS-CoV-2 B.1.617.2 (Delta) variant predominance (1-5), but little is known about durability of protection after 3 doses during periods of Delta or SARS-CoV-2 B.1.1.529 (Omicron) variant predominance. A test-negative case-control study design using data from eight VISION Network sites examined vaccine effectiveness (VE) against COVID-19 emergency department/urgent care (ED/UC) visits and hospitalizations among U.S. adults aged ≥18 years at various time points after receipt of a second or third vaccine dose during two periods: Delta variant predominance and Omicron variant predominance (i.e., periods when each variant accounted for ≥50% of sequenced isolates). Persons categorized as having received 3 doses included those who received a third dose in a primary series or a booster dose after a 2 dose primary series (including the reduced-dosage Moderna booster). The VISION Network analyzed 241,204 ED/UC encounters** and 93,408 hospitalizations across 10 states during August 26, 2021-January 22, 2022. VE after receipt of both 2 and 3 doses was lower during the Omicron-predominant than during the Delta-predominant period at all time points evaluated. During both periods, VE after receipt of a third dose was higher than that after a second dose; however, VE waned with increasing time since vaccination. During the Omicron period, VE against ED/UC visits was 87% during the first 2 months after a third dose and decreased to 66% among those vaccinated 4-5 months earlier; VE against hospitalizations was 91% during the first 2 months following a third dose and decreased to 78% ≥4 months after a third dose. For both Delta- and Omicron-predominant periods, VE was generally higher for protection against hospitalizations than against ED/UC visits. All eligible persons should remain up to date with recommended COVID-19 vaccinations to best protect against COVID-19-associated hospitalizations and ED/UC visits.
Effectiveness of a Third Dose of mRNA Vaccines Against COVID-19–Associated Emergency Department and Urgent Care Encounters and Hospitalizations Among Adults During Periods of Delta and Omicron Variant Predominance — VISION Network, 10 States, August 2021–January 2022
Estimates of COVID-19 mRNA vaccine effectiveness (VE) have declined in recent months (1,2) because of waning vaccine induced immunity over time,* possible increased immune evasion by SARS-CoV-2 variants (3), or a combination of these and other factors. CDC recommends that all persons aged ≥12 years receive a third dose (booster) of an mRNA vaccine ≥5 months after receipt of the second mRNA vaccine dose and that immunocompromised individuals receive a third primary dose. A third dose of BNT162b2 (Pfizer-BioNTech) COVID-19 vaccine increases neutralizing antibody levels (4), and three recent studies from Israel have shown improved effectiveness of a third dose in preventing COVID-19 associated with infections with the SARS-CoV-2 B.1.617.2 (Delta) variant (5-7). Yet, data are limited on the real-world effectiveness of third doses of COVID-19 mRNA vaccine in the United States, especially since the SARS-CoV-2 B.1.1.529 (Omicron) variant became predominant in mid-December 2021. The VISION Network examined VE by analyzing 222,772 encounters from 383 emergency departments (EDs) and urgent care (UC) clinics and 87,904 hospitalizations from 259 hospitals among adults aged ≥18 years across 10 states from August 26, 2021 to January 5, 2022. Analyses were stratified by the period before and after the Omicron variant became the predominant strain (>50% of sequenced viruses) at each study site. During the period of Delta predominance across study sites in the United States (August-mid-December 2021), VE against laboratory-confirmed COVID-19-associated ED and UC encounters was 86% 14-179 days after dose 2, 76% ≥180 days after dose 2, and 94% ≥14 days after dose 3. Estimates of VE for the same intervals after vaccination during Omicron variant predominance were 52%, 38%, and 82%, respectively. During the period of Delta variant predominance, VE against laboratory-confirmed COVID-19-associated hospitalizations was 90% 14-179 days after dose 2, 81% ≥180 days after dose 2, and 94% ≥14 days after dose 3. During Omicron variant predominance, VE estimates for the same intervals after vaccination were 81%, 57%, and 90%, respectively. The highest estimates of VE against COVID-19-associated ED and UC encounters or hospitalizations during both Delta- and Omicron-predominant periods were among adults who received a third dose of mRNA vaccine. All unvaccinated persons should get vaccinated as soon as possible. All adults who have received mRNA vaccines during their primary COVID-19 vaccination series should receive a third dose when eligible, and eligible persons should stay up to date with COVID-19 vaccinations.
Zygomycosis in Solid Organ Transplant Recipients: A Prospective, Matched Case-Control Study to Assess Risks for Disease and Outcome
BackgroundClinical characteristics, risks, and outcomes in solid organ transplant (SOT) recipients with zygomycosis in the era of modern immunosuppressive and newer antifungal agent use have not been defined MethodsIn a matched case-controlled study, SOT recipients with zygomycosis were prospectively studied. The primary outcome measure was success (complete or partial response) at 90 days ResultsRenal failure (odds ratio [OR], 3.17; P=.010), diabetes mellitus (OR, 8.11; P<.001), and prior voriconazole and/or caspofungin use (OR, 4.41; P=.033) were associated with a higher risk of zygomycosis, whereas tacrolimus (OR, 0.23; P=.002) was associated with a lower risk of zygomycosis. Liver transplant recipients were more likely to have disseminated disease (OR, 5.48; P=.021) and developed zygomycosis earlier after transplantation than did other SOT recipients (median, 0.8 vs 5.7 months; P<.001). Overall the treatment success rate was 60%. Renal failure (OR, 11.3; P=.023) and disseminated disease (OR, 14.6; P=.027) were independently predictive of treatment failure, whereas surgical resection was associated with treatment success (OR, 33.3; P=.003). The success rate with liposomal amphotericin B was 4-fold higher even when controlling for the aforementioned variables ConclusionsThe risks identified for zygomycosis and for disseminated disease, including those that were previously unrecognized, have implications for further elucidating the biologic basis and for optimizing outcomes in SOT recipients with zygomycosis
Estimation of COVID-19 mRNA Vaccine Effectiveness and COVID-19 Illness and Severity by Vaccination Status During Omicron BA.4 and BA.5 Sublineage Periods
Recent SARS-CoV-2 Omicron variant sublineages, including BA.4 and BA.5, may be associated with greater immune evasion and less protection against COVID-19 after vaccination. To evaluate the estimated vaccine effectiveness (VE) of 2, 3, or 4 doses of COVID-19 mRNA vaccination among immunocompetent adults during a period of BA.4 or BA.5 predominant circulation; and to evaluate the relative severity of COVID-19 in hospitalized patients across Omicron BA.1, BA.2 or BA.2.12.1, and BA.4 or BA.5 sublineage periods. This test-negative case-control study was conducted in 10 states with data from emergency department (ED) and urgent care (UC) encounters and hospitalizations from December 16, 2021, to August 20, 2022. Participants included adults with COVID-19-like illness and molecular testing for SARS-CoV-2. Data were analyzed from August 2 to September 21, 2022. mRNA COVID-19 vaccination. The outcomes of interest were COVID-19 ED or UC encounters, hospitalizations, and admission to the intensive care unit (ICU) or in-hospital death. VE associated with protection against medically attended COVID-19 was estimated, stratified by care setting and vaccine doses (2, 3, or 4 doses vs 0 doses as the reference group). Among hospitalized patients with COVID-19, demographic and clinical characteristics and in-hospital outcomes were compared across sublineage periods. During the BA.4 and BA.5 predominant period, there were 82 229 eligible ED and UC encounters among patients with COVID-19-like illness (median [IQR] age, 51 [33-70] years; 49 682 [60.4%] female patients), and 19 114 patients (23.2%) had test results positive for SARS-CoV-2; among 21 007 hospitalized patients (median [IQR] age, 71 [58-81] years; 11 209 [53.4%] female patients), 3583 (17.1 %) had test results positive for SARS-CoV-2. Estimated VE against hospitalization was 25% (95% CI, 17%-32%) for receipt of 2 vaccine doses at 150 days or more after receipt, 68% (95% CI, 50%-80%) for a third dose 7 to 119 days after receipt, and 36% (95% CI, 29%-42%) for a third dose 120 days or more (median [IQR], 235 [204-262] days) after receipt. Among patients aged 65 years or older who had received a fourth vaccine dose, VE was 66% (95% CI, 53%-75%) at 7 to 59 days after vaccination and 57% (95% CI, 44%-66%) at 60 days or more (median [IQR], 88 [75-105] days) after vaccination. Among hospitalized patients with COVID-19, ICU admission or in-hospital death occurred in 21.4% of patients during the BA.1 period vs 14.7% during the BA.4 and BA.5 period (standardized mean difference: 0.17). In this case-control study of COVID-19 vaccines and illness, VE associated with protection against medically attended COVID-19 illness was lower with increasing time since last dose; estimated VE was higher after receipt of 1 or 2 booster doses compared with a primary series alone.
Effectiveness of COVID-19 Pfizer-BioNTech BNT162b2 mRNA Vaccination in Preventing COVID-19–Associated Emergency Department and Urgent Care Encounters and Hospitalizations Among Nonimmunocompromised Children and Adolescents Aged 5–17 Years — VISION Network, 10 States, April 2021–January 2022
The efficacy of the BNT162b2 (Pfizer-BioNTech) vaccine against laboratory-confirmed COVID-19 exceeded 90% in clinical trials that included children and adolescents aged 5-11, 12-15, and 16-17 years (1-3). Limited real-world data on 2-dose mRNA vaccine effectiveness (VE) in persons aged 12-17 years (referred to as adolescents in this report) have also indicated high levels of protection against SARS-CoV-2 (the virus that causes COVID-19) infection and COVID-19-associated hospitalization (4-6); however, data on VE against the SARS-CoV-2 B.1.1.529 (Omicron) variant and duration of protection are limited. Pfizer-BioNTech VE data are not available for children aged 5-11 years. In partnership with CDC, the VISION Network* examined 39,217 emergency department (ED) and urgent care (UC) encounters and 1,699 hospitalizations among persons aged 5-17 years with COVID-19-like illness across 10 states during April 9, 2021-January 29, 2022, to estimate VE using a case-control test-negative design. Among children aged 5-11 years, VE against laboratory-confirmed COVID-19-associated ED and UC encounters 14-67 days after dose 2 (the longest interval after dose 2 in this age group) was 46%. Among adolescents aged 12-15 and 16-17 years, VE 14-149 days after dose 2 was 83% and 76%, respectively; VE ≥150 days after dose 2 was 38% and 46%, respectively. Among adolescents aged 16-17 years, VE increased to 86% ≥7 days after dose 3 (booster dose). VE against COVID-19-associated ED and UC encounters was substantially lower during the Omicron predominant period than the B.1.617.2 (Delta) predominant period among adolescents aged 12-17 years, with no significant protection ≥150 days after dose 2 during Omicron predominance. However, in adolescents aged 16-17 years, VE during the Omicron predominant period increased to 81% ≥7 days after a third booster dose. During the full study period, including pre-Delta, Delta, and Omicron predominant periods, VE against laboratory-confirmed COVID-19-associated hospitalization among children aged 5-11 years was 74% 14-67 days after dose 2, with wide CIs that included zero. Among adolescents aged 12-15 and 16-17 years, VE 14-149 days after dose 2 was 92% and 94%, respectively; VE ≥150 days after dose 2 was 73% and 88%, respectively. All eligible children and adolescents should remain up to date with recommended COVID-19 vaccinations, including a booster dose for those aged 12-17 years.
Effectiveness of 2, 3, and 4 COVID-19 mRNA Vaccine Doses Among Immunocompetent Adults During Periods when SARS-CoV-2 Omicron BA.1 and BA.2/BA.2.12.1 Sublineages Predominated — VISION Network, 10 States, December 2021–June 2022
The Omicron variant (B.1.1.529) of SARS-CoV-2, the virus that causes COVID-19, was first identified in the United States in November 2021, with the BA.1 sublineage (including BA.1.1) causing the largest surge in COVID-19 cases to date. Omicron sublineages BA.2 and BA.2.12.1 emerged later and by late April 2022, accounted for most cases.* Estimates of COVID-19 vaccine effectiveness (VE) can be reduced by newly emerging variants or sublineages that evade vaccine-induced immunity (1), protection from previous SARS-CoV-2 infection in unvaccinated persons (2), or increasing time since vaccination (3). Real-world data comparing VE during the periods when the BA.1 and BA.2/BA.2.12.1 predominated (BA.1 period and BA.2/BA.2.12.1 period, respectively) are limited. The VISION network examined 214,487 emergency department/urgent care (ED/UC) visits and 58,782 hospitalizations with a COVID-19-like illness diagnosis among 10 states during December 18, 2021-June 10, 2022, to evaluate VE of 2, 3, and 4 doses of mRNA COVID-19 vaccines (BNT162b2 [Pfizer-BioNTech] or mRNA-1273 [Moderna]) compared with no vaccination among adults without immunocompromising conditions. VE against COVID-19-associated hospitalization 7-119 days and ≥120 days after receipt of dose 3 was 92% (95% CI = 91%-93%) and 85% (95% CI = 81%-89%), respectively, during the BA.1 period, compared with 69% (95% CI = 58%-76%) and 52% (95% CI = 44%-59%), respectively, during the BA.2/BA.2.12.1 period. Patterns were similar for ED/UC encounters. Among adults aged ≥50 years, VE against COVID-19-associated hospitalization ≥120 days after receipt of dose 3 was 55% (95% CI = 46%-62%) and ≥7 days (median = 27 days) after a fourth dose was 80% (95% CI = 71%-85%) during BA.2/BA.2.12.1 predominance. Immunocompetent persons should receive recommended COVID-19 booster doses to prevent moderate to severe COVID-19, including a first booster dose for all eligible persons and second booster dose for adults aged ≥50 years at least 4 months after an initial booster dose. Booster doses should be obtained immediately when persons become eligible. .
Waning of vaccine effectiveness against moderate and severe covid-19 among adults in the US from the VISION network: test negative, case-control study
AbstractObjectiveTo estimate the effectiveness of mRNA vaccines against moderate and severe covid-19 in adults by time since second, third, or fourth doses, and by age and immunocompromised status.DesignTest negative case-control study.SettingHospitals, emergency departments, and urgent care clinics in 10 US states, 17 January 2021 to 12 July 2022.Participants893 461 adults (≥18 years) admitted to one of 261 hospitals or to one of 272 emergency department or 119 urgent care centers for covid-like illness tested for SARS-CoV-2.Main outcome measuresThe main outcome was waning of vaccine effectiveness with BNT162b2 (Pfizer-BioNTech) or mRNA-1273 (Moderna) vaccine during the omicron and delta periods, and the period before delta was dominant using logistic regression conditioned on calendar week and geographic area while adjusting for age, race, ethnicity, local virus circulation, immunocompromised status, and likelihood of being vaccinated.Results45 903 people admitted to hospital with covid-19 (cases) were compared with 213 103 people with covid-like illness who tested negative for SARS-CoV-2 (controls), and 103 287 people admitted to emergency department or urgent care with covid-19 (cases) were compared with 531 168 people with covid-like illness who tested negative for SARS-CoV-2. In the omicron period, vaccine effectiveness against covid-19 requiring admission to hospital was 89% (95% confidence interval 88% to 90%) within two months after dose 3 but waned to 66% (63% to 68%) by four to five months. Vaccine effectiveness of three doses against emergency department or urgent care visits was 83% (82% to 84%) initially but waned to 46% (44% to 49%) by four to five months. Waning was evident in all subgroups, including young adults and individuals who were not immunocompromised; although waning was morein people who were immunocompromised. Vaccine effectiveness increased among most groups after a fourth dose in whom this booster was recommended.ConclusionsEffectiveness of mRNA vaccines against moderate and severe covid-19 waned with time after vaccination. The findings support recommendations for a booster dose after a primary series and consideration of additional booster doses.
Influence of Plasma Viremia on Defects in Number and Immunophenotype of Blood Dendritic Cell Subsets in Human Immunodeficiency Virus 1–Infected Individuals
Dendritic cells (DCs) are postulated to be involved in transmission of human immunodeficiency virus (HIV) type 1 to T cells and in stimulation of HIV-1–specific cell-mediated immunity. Blood DCs have been categorized as myeloid (mDC) and plasmacytoid (pDC) subsets, on the basis of differences in phenotype and function. Blood DC subset numbers and expression of costimulatory molecules and HIV-1 coreceptors on DCs were measured in the blood of treated and untreated HIV-1–infected subjects and uninfected control subjects. Absolute numbers of mDCs and pDCs were lower in HIV-1–infected subjects than in control subjects, most significantly in those with active HIV-1 replication. Increased surface expression of costimulatory molecules was observed on both DC subsets in subjects with HIV-1 viremia. Highly active antiretroviral therapy suppression of plasma viremia resulted in increases in blood DC numbers and decreases in DC costimulatory molecule expression. These findings further define the impact of HIV-1 replication on blood DC subsets in vivo
Relationship of Reconstituted Adaptive and Innate Cytomegalovirus (CMV)-Specific Immune Responses with CMV Viremia in Hematopoietic Stem Cell Transplant Recipients
Background. Cytomegalovirus (CMV) is a major cause of morbidity in transplant recipients. An immunologic predictor of protection against CMV reactivation or disease is highly desirable. Methods. Thirty-eight allogeneic hematopoietic stem cell transplant recipients at risk of CMV disease were prospectively monitored using whole blood CMV-DNA polymerase chain reaction assay, lymphocyte proliferation assay (LPA), interferon γ enzyme-linked immunospot assay (ELISPOT), and flow cytometric enumeration of CMV-specific CD69+interferon (IFN)γ+CD4, CD8, natural killer cells, and γδ T cells. Results. Twenty-one subjects developed ⩾1 episode of CMV viremia and 4 developed disease during 360 days of follow-up. Among CMV-seropositive recipients, positive CMV-LPA before transplantation correlated with higher risk of developing viremia after transplantation (P=.02). In contrast, after transplantation, reconstitution of CMV-LPA was significantly associated with absence of CMV viremia over 360 days of follow-up (P=.04) and with faster clearance of viremia during individual episodes of CMV reactivation (P=.03). Reconstitution of CMV-specific natural killer cells was also associated with absence of CMV viremia over 360 days of study (P=.04) but not with faster clearance of viremia. CMV-specific CD4, CD8, γδ T cells, and ELISPOT values were not significantly different in viremic subjects, compared with the corresponding values in nonviremic subjects, at any time point. Conclusions. To our knowledge, this is the first study to prospectively compare multiple measures of innate and adaptive immune responses in hematopoietic stem cell transplant recipients with CMV viremia. The strongest immune correlates with protection against CMV viremia in hematopoietic stem cell transplant recipients are reconstitution of CMV-specific T cell memory responses (LPA) and recovery of natural killer cell function. In contrast, positive CMV-LPA before transplantation may be a marker of high risk of CMV reactivation after transplantation.
MSG-01: A Randomized, Double-Blind, Placebo-Controlled Trial of Caspofungin Prophylaxis Followed by Preemptive Therapy for Invasive Candidiasis in High-Risk Adults in the Critical Care Setting
Background. Invasive candidiasis is the third most common bloodstream infection in the intensive care unit (ICU) and is associated with morbidity and mortality. Prophylaxis and preemptive therapy are attractive strategies for this setting. Methods. We conducted a multicenter, randomized, double-blind, placebo-controlled trial of caspofungin as antifungal prophylaxis in 222 adults who were in the ICU for at least 3 days, were ventilated, received antibiotics, had a central line, and had 1 additional risk factor (parenteral nutrition, dialysis, surgery, pancreatitis, systemic steroids, or other immunosuppressants). Subjects' (1,3)-β-D-glucan levels were monitored twice weekly. The primary endpoint was the incidence of proven or probable invasive candidiasis by EORTC/MSG criteria in patients who did not have disease at baseline. Patients who had invasive candidiasis were allowed to break the blind and receive preemptive therapy with caspofungin. The preemptive approach analysis included patients all patients who received study drug, including those positive at baseline. Results. The incidence of proven/probable invasive candidiasis in the placebo and caspofungin arms was 16.7% (14/84) and 9.8% (10/102), respectively, for prophylaxis (P = .14), and 30.4% (31/102) and 18.8% (22/117), respectively, for the preemptive approach (P = .04); however, this analysis included patients with baseline disease. There were no significant differences in the secondary endpoints of mortality, antifungal use, or length of stay. There were no safety differences. Conclusions. Caspofungin was safe and tended to reduce the incidence of invasive candidiasis when used for prophylaxis, but the difference was not statistically significant. A preemptive therapy approach deserves further study. Clinical Trials Registration. NCT00520234.