Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Reading Level
      Reading Level
      Clear All
      Reading Level
  • Content Type
      Content Type
      Clear All
      Content Type
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Item Type
    • Is Full-Text Available
    • Subject
    • Country Of Publication
    • Publisher
    • Source
    • Target Audience
    • Donor
    • Language
    • Place of Publication
    • Contributors
    • Location
74 result(s) for "Barton, Hazel A"
Sort by:
Antibiotic Resistance Is Prevalent in an Isolated Cave Microbiome
Antibiotic resistance is a global challenge that impacts all pharmaceutically used antibiotics. The origin of the genes associated with this resistance is of significant importance to our understanding of the evolution and dissemination of antibiotic resistance in pathogens. A growing body of evidence implicates environmental organisms as reservoirs of these resistance genes; however, the role of anthropogenic use of antibiotics in the emergence of these genes is controversial. We report a screen of a sample of the culturable microbiome of Lechuguilla Cave, New Mexico, in a region of the cave that has been isolated for over 4 million years. We report that, like surface microbes, these bacteria were highly resistant to antibiotics; some strains were resistant to 14 different commercially available antibiotics. Resistance was detected to a wide range of structurally different antibiotics including daptomycin, an antibiotic of last resort in the treatment of drug resistant Gram-positive pathogens. Enzyme-mediated mechanisms of resistance were also discovered for natural and semi-synthetic macrolide antibiotics via glycosylation and through a kinase-mediated phosphorylation mechanism. Sequencing of the genome of one of the resistant bacteria identified a macrolide kinase encoding gene and characterization of its product revealed it to be related to a known family of kinases circulating in modern drug resistant pathogens. The implications of this study are significant to our understanding of the prevalence of resistance, even in microbiomes isolated from human use of antibiotics. This supports a growing understanding that antibiotic resistance is natural, ancient, and hard wired in the microbial pangenome.
A diverse intrinsic antibiotic resistome from a cave bacterium
Antibiotic resistance is ancient and widespread in environmental bacteria. These are therefore reservoirs of resistance elements and reflective of the natural history of antibiotics and resistance. In a previous study, we discovered that multi-drug resistance is common in bacteria isolated from Lechuguilla Cave, an underground ecosystem that has been isolated from the surface for over 4 Myr. Here we use whole-genome sequencing, functional genomics and biochemical assays to reveal the intrinsic resistome of Paenibacillus sp. LC231, a cave bacterial isolate that is resistant to most clinically used antibiotics. We systematically link resistance phenotype to genotype and in doing so, identify 18 chromosomal resistance elements, including five determinants without characterized homologues and three mechanisms not previously shown to be involved in antibiotic resistance. A resistome comparison across related surface Paenibacillus affirms the conservation of resistance over millions of years and establishes the longevity of these genes in this genus. Antibiotic resistance is common in environmental bacteria, including those living in isolated caves. Here, Pawlowski et al . study one of these bacterial strains, showing that it is resistant to most clinically used antibiotics through a remarkable variety of mechanisms, some of which are new to science.
The diversity of cellular systems involved in carbonate precipitation by Escherichia coli
Climate change is increasing the need to limit levels of anthropogenic CO 2 released into the atmosphere. One approach being investigated is to generate products based on microbially induced carbonate precipitation (MICP), which can trap CO 2 as CaCO 3 . We recently identified a novel MICP pathway in bacteria that is initiated by Ca 2+ toxicity in cells, causing extracellular CO 2 to be trapped as CO 3 2- by Escherichia coli, although the yield of precipitated CaCO 3 remained low (in the milligram range). In this work, we used the E. coli Keio gene knock-out library to identify 54 genes involved in MICP in E. coli, which could be broadly characterized into four groups: central metabolism, iron metabolism, cell architecture, and transport. The role of central metabolism appears to be crucial in maintaining alkaline conditions surrounding the cell that promote CaCO 3 precipitation. The role of iron metabolism was less clear, although the results suggest that growth rate influences the initiation of MICP. While the impact of repeating polymeric structures on cell surfaces promoting MICP is well established, our results suggest that other structural features may play a role, including fimbriae and flagella. Finally, the results confirmed that Ca 2+ transport is central to MICP under calcium stress. The results further suggest that the ZntB efflux pump may play a previously unidentified role in Ca 2+ transport in E. coli. By overexpressing some of these genes, our work suggests that there are several previously unidentified cellular mechanisms that could serve as a target for enhanced MICP in E. coli. By incorporating these processes into MICP pathways in E. coli, it may be possible to increase the volume of CO 2 fixed using this pathway and yield potentially new products that can replace CO 2 intensive products, such as precipitated calcium carbonates (PCCs) for industry.
Women Are Underrepresented and Receive Differential Outcomes at ASM Journals: a Six-Year Retrospective Analysis
Barriers in science and academia have prevented women from becoming researchers and experts that are viewed as equivalent to their colleagues who are men. We evaluated the participation and success of women researchers at ASM journals to better understand their success in the field of microbiology. We found that women are underrepresented as expert scientists at ASM journals. This is, in part, due to a combination of both low submissions from senior women authors and more negative outcomes on submitted manuscripts for women compared to men. Despite 50% of biology Ph.D. graduates being women, the number of women that advance in academia decreases at each level (e.g., from graduate to postdoctorate to tenure track). Recently, scientific societies and publishers have begun examining internal submissions data to evaluate representation and evaluation of women in their peer review processes; however, representation and attitudes differ by scientific field, and to date, no studies have investigated academic publishing in the field of microbiology. Using manuscripts submitted between January 2012 and August 2018 to the 15 journals published by the American Society for Microbiology (ASM), we describe the representation of women at ASM journals and the outcomes of their manuscripts. Senior women authors at ASM journals were underrepresented compared to global and society estimates of microbiology researchers. Additionally, manuscripts submitted by corresponding authors that were women received more negative outcomes than those submitted by men. These negative outcomes were somewhat mediated by whether or not the corresponding author was based in the United States and by the type of institution for United States-based authors. Nonetheless, the pattern for women corresponding authors to receive more negative outcomes on their submitted manuscripts held. We conclude with suggestions to improve the representation of women and decrease structural penalties against women. IMPORTANCE Barriers in science and academia have prevented women from becoming researchers and experts that are viewed as equivalent to their colleagues who are men. We evaluated the participation and success of women researchers at ASM journals to better understand their success in the field of microbiology. We found that women are underrepresented as expert scientists at ASM journals. This is, in part, due to a combination of both low submissions from senior women authors and more negative outcomes on submitted manuscripts for women compared to men.
Comparison of the White-Nose Syndrome Agent Pseudogymnoascus destructans to Cave-Dwelling Relatives Suggests Reduced Saprotrophic Enzyme Activity
White-nose Syndrome (WNS) is an emerging infectious mycosis that has impacted multiple species of North American bats since its initial discovery in 2006, yet the physiology of the causal agent, the psychrophilic fungus Pseudogymnoascus destructans ( = Geomyces destructans), is not well understood. We investigated the ability of P. destructans to secrete enzymes that could permit environmental growth or affect pathogenesis and compared enzyme activity across several Pseudogymnoascus species isolated from both hibernating bats and cave sediments. We found that P. destructans produced enzymes that could be beneficial in either a pathogenic or saprotrophic context, such as lipases, hemolysins, and urease, as well as chitinase and cellulases, which could aid in saprotrophic growth. The WNS pathogen showed significantly lower activity for urease and endoglucanase compared to con-generic species (Pseudogymnoascus), which may indicate a shift in selective pressure to the detriment of P. destructans' saprotrophic ability. Based on the positive function of multiple saprotrophic enzymes, the causal agent of White-nose Syndrome shows potential for environmental growth on a variety of substrates found in caves, albeit at a reduced level compared to environmental strains. Our data suggest that if P. destructans emerged as an opportunistic infection from an environmental source, co-evolution with its host may have led to a reduced capacity for saprotrophic growth.
Enhanced terrestrial Fe(II) mobilization identified through a novel mechanism of microbially driven cave formation in Fe(III)-rich rocks
Most cave formation requires mass separation from a host rock in a process that operates outward from permeable pathways to create the cave void. Given the poor solubility of Fe(III) phases, such processes are insufficient to account for the significant iron formation caves (IFCs) seen in Brazilian banded iron formations (BIF) and associated rock. In this study we demonstrate that microbially-mediated reductive Fe(III) dissolution is solubilizing the poorly soluble Fe(III) phases to soluble Fe(II) in the anoxic zone behind cave walls. The resultant Fe(III)-depleted material (termed sub muros ) is unable to maintain the structural integrity of the walls and repeated rounds of wall collapse lead to formation of the cave void in an active, measurable process. This mechanism may move significant quantities of Fe(II) into ground water and may help to explain the mechanism of BIF dissolution and REE enrichment in the generation of canga. The role of Fe(III) reducing microorganism and mass separation behind the walls (outward-in, rather than inward-out) is not only a novel mechanism of speleogenesis, but it also may identify a previously overlooked source of continental Fe that may have contributed to Archaean BIF formation.
The impact of sample processing and media chemistry on the culturable diversity of bacteria isolated from a cave
Although molecular approaches can identify members of microbial communities in the environment, genomic information does not necessarily correlate with environmental phenotype. Understanding functional roles can be done by cultivating representative species, yet the culturablility of bacteria from caves remains low, at 0.02%, limiting our understanding of microbial community interactions and processes. We have investigated several factors influencing culturability of bacteria from a single sample location in Maxwelton Sink Cave, WV, USA. Extended incubation of inoculated plates showed a significant increase in colony counts from two to four weeks, indicating that extended incubations increase culturability. There were no significant differences in plate counts or diversity measures when the sample was suspended in different buffers prior to cultivation, while samples plated immediately after collection demonstrated higher culturability. Although supplementing the media with antibiotics reduced colony counts and cultured diversity, these plates did appear to contain a higher proportion of slow-growing oligotrophs. Finally, among a selection of culture media used, pyruvate agar showed the highest culturability and bacterial diversity, which may be a result of the oxygen radical scavenging effects of pyruvate. By identifying methods that improve culturable diversity, we hope to further understand the roles played by bacteria in cave communities, and test hypotheses that are best assessed using culture-based methods, such as screening for bioactive compounds or confirming in situ metabolic strategies.
Toward Self-Healing Coatings: Bacterial Survival and Calcium Carbonate Precipitation in Acrylic and Styrene–Acrylic Model Paint Films
Engineered living materials (ELMs) incorporate living material to provide a gain of function over existing materials, such as self-repair. The use of bacteria in ELMs has been studied extensively in concrete, where repair can be facilitated by bacterial ureolytic calcium carbonate (CaCO3) precipitation; however, the study of bacteria in other construction materials is limited. We examined the ability of bacterial species to survive in common latex binder chemistries, a model paint formulation, and through the film-forming process. The longest survival was by bacterial spores of Bacillus simplex str. GGC-P6A, which survive in latex emulsions, a liquid coating composition, and in a dried film for >28 days. Surprisingly, our data show that non-spore-forming Escherichia coli survive at least 15 days in liquid composition, which appear to be influenced by the composition of the outer membrane, nutrient scavenging, and the ability to metabolize toxic acrylate. Spores of GGC-P6A were shown to grow in solid paint films from sites of damage, resulting in crack filling through carbonate precipitation, demonstrating the potential for self-repair through microbially mediated CaCO3 precipitation without directed pH modification. These data suggest that a range of bacterial species, in particular members of Bacilli, may facilitate new applications of bio-augmented, self-healing coating systems.
Genomic characterization of bacteria from the ultra-oligotrophic Madison aquifer: insight into the archetypical LuxI/LuxR and identification of novel LuxR solos
Objectives To characterize the bacterial community of Wind Cave’s Madison aquifer through whole-genome sequencing, and to better understand the bacterial ecology by identifying genes involved in acyl-homoserine lactone (AHL) based quorum-sensing (QS) systems. Results Genome-based taxonomic classification revealed the microbial richness present in the pristine Madison aquifer. The strains were found to span eleven genera and fourteen species, of which eight had uncertain taxonomic classifications. The genomes of strains SD129 and SD340 were found to contain the archetypical AHL QS system composed of two genes, luxI and luxR . Surprisingly, the genomes of strains SD115, SD129, SD274 and SD316 were found to contain one to three luxR orphans (solos). Strain SD129, besides possessing an archetypical AHL QS luxI-luxR pair, also contained two luxR solos, while strain SD316 contained three LuxR solos and no luxI-luxR pairs. The ligand-binding domain of two LuxR solos, one each from strains SD129 and SD316, were found to contain novel substitutions not previously reported, thus may represent two LuxR orphans that detection and response to unknown self-produced signal(s), or to signal(s) produced by other organisms.