Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Language
      Language
      Clear All
      Language
  • Subject
      Subject
      Clear All
      Subject
  • Item Type
      Item Type
      Clear All
      Item Type
  • Discipline
      Discipline
      Clear All
      Discipline
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
3 result(s) for "Bas, Isabelita N."
Sort by:
Waist circumference and the risk of hypertension and prediabetes among Filipino women
Objectives To examine waist circumference as a risk factor for having hypertension only, impaired fasting glucose only, or both hypertension and impaired fasting glucose, and assess whether the associations vary according to overweight status. Furthermore, optimal cut-offs for waist circumference in overweight women and non-overweight women were explored. Data and methods Data from 1,871 women aged 35–68 years in the 2005 Cebu Longitudinal Health and Nutrition Survey were used. Multinomial logistic regressions were used to model how waist circumference influenced the likelihood of having the three illness categories compared to having neither condition. Waist circumference cut-offs were explored using receiver operating characteristic analysis. Results Adjusted for age and other confounders, each cm increase in waist circumference increased the odds of hypertension by 5 % for non-overweight women and 3 % for overweight women; impaired fasting glucose by 9 and 3 % for non-overweight and overweight women, respectively; and hypertension and impaired fasting glucose by 17 % among non-overweight versus 9 % for overweight women. Waist circumference cut-offs for non-overweight women were lower than overweight women. Conclusion Waist circumference was significantly associated with impaired fasting glucose and both hypertension and impaired fasting glucose, and the associations vary by overweight status.
Investigating the IGF axis as a pathway for intergenerational effects
Early nutritional and growth experiences can impact development, metabolic function, and reproductive outcomes in adulthood, influencing health trajectories in the next generation. The insulin-like growth factor (IGF) axis regulates growth, metabolism, and energetic investment, but whether it plays a role in the pathway linking maternal experience with offspring prenatal development is unclear. To test this, we investigated patterns of maternal developmental weight gain (a proxy of early nutrition), young adult energy stores, age, and parity as predictors of biomarkers of the pregnancy IGF axis (n = 36) using data from the Cebu Longitudinal Health and Nutrition Survey in Metro Cebu, Philippines. We analyzed maternal conditional weight measures at 2, 8, and 22 years of age and leptin at age 22 (a marker of body fat/energy stores) in relation to free IGF-1 and IGFBP-3 in mid/late pregnancy (mean age = 27). Maternal IGF axis measures were also assessed as predictors of offspring fetal growth. Maternal age, parity, and age 22 leptin were associated with pregnancy free IGF-1, offspring birth weight, and offspring skinfold thickness. We find that free IGF-1 levels in pregnancy are more closely related to nutritional status in early adulthood than to preadult developmental nutrition and demonstrate significant effects of young adult leptin on offspring fetal fat mass deposition. We suggest that the previously documented finding that maternal developmental nutrition predicts offspring birth size likely operates through pathways other than the maternal IGF axis, which reflects more recent energy status.
Genetic studies of body mass index yield new insights for obesity biology
Obesity is heritable and predisposes to many diseases. To understand the genetic basis of obesity better, here we conduct a genome-wide association study and Metabochip meta-analysis of body mass index (BMI), a measure commonly used to define obesity and assess adiposity, in up to 339,224 individuals. This analysis identifies 97 BMI-associated loci ( P  < 5 × 10 −8 ), 56 of which are novel. Five loci demonstrate clear evidence of several independent association signals, and many loci have significant effects on other metabolic phenotypes. The 97 loci account for ∼2.7% of BMI variation, and genome-wide estimates suggest that common variation accounts for >20% of BMI variation. Pathway analyses provide strong support for a role of the central nervous system in obesity susceptibility and implicate new genes and pathways, including those related to synaptic function, glutamate signalling, insulin secretion/action, energy metabolism, lipid biology and adipogenesis. A genome-wide association study and Metabochip meta-analysis of body mass index (BMI) detects 97 BMI-associated loci, of which 56 were novel, and many loci have effects on other metabolic phenotypes; pathway analyses implicate the central nervous system in obesity susceptibility and new pathways such as those related to synaptic function, energy metabolism, lipid biology and adipogenesis. Genetic correlates of obesity In the second of two Articles in this issue from the GIANT Consortium, Elizabeth Speliotes and collegues conducted a genome-wide association study and Metabochip meta-analysis of body mass index (BMI), commonly used to define obesity and assess adiposity, to find 97 BMI-associated loci, of which 56 were novel. Many of these loci have significant effects on other metabolic phenotypes. The 97 loci account for about 2.7% of BMI variation, and genome-wide estimates suggest common variation accounts for more than 20% of BMI variation. Pathway analyses implicate the central nervous system in obesity susceptibility including synaptic function, glutamate signaling, insulin secretion/action, energy metabolism, lipid biology and adipogenesis.