Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
1 result(s) for "Bashar, Shikder Shafiul"
Sort by:
A dataset of high-resolution plantar pressures for gait analysis across varying footwear and walking speeds
Gait refers to the patterns of limb movement generated during walking, which are unique to each individual due to both physical and behavioural traits. Walking patterns have been widely studied in biometrics, biomechanics, sports, and rehabilitation. While traditional methods rely on video and motion capture, advances in plantar pressure sensing technology now offer deeper insights into gait. However, underfoot pressures during walking remain underexplored due to the lack of large, publicly accessible datasets. To address this, we introduce the UNB StepUP-P150 dataset: a footStep database for gait analysis and recognition using Underfoot Pressure, including data from 150 individuals. This dataset comprises high-resolution plantar pressure data (4 sensors/cm 2 ) collected using a 1.2m by 3.6m pressure-sensing walkway. It contains over 200,000 footsteps from participants walking with various speeds (preferred, slow-to-stop, fast, and slow) and footwear conditions (barefoot, standard shoes, and two personal shoes), supporting advancements in biometric gait recognition and presenting new research opportunities in biomechanics and deep learning. UNB StepUP-P150 establishes a new benchmark for plantar pressure-based gait analysis and recognition.