Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
97
result(s) for
"Basile, Adriana"
Sort by:
Epigallocatechin Gallate (EGCG): Pharmacological Properties, Biological Activities and Therapeutic Potential
by
Rigano, Daniela
,
Maresca, Viviana
,
Bontempo, Paola
in
Animals
,
Anti-Inflammatory Agents - chemistry
,
Anti-Inflammatory Agents - pharmacology
2025
Epigallocatechin gallate (EGCG), the predominant catechin in green tea, comprises approximately 50% of its total polyphenol content and has garnered widespread recognition for its significant therapeutic potential. As the principal bioactive component of Camellia sinensis, EGCG is celebrated for its potent antioxidant, anti-inflammatory, cardioprotective, and antitumor properties. The bioavailability and metabolism of EGCG within the gut microbiota underscore its systemic effects, as it is absorbed in the intestine, metabolized into bioactive compounds, and transported to target organs. This compound has been shown to influence key physiological pathways, particularly those related to lipid metabolism and inflammation, offering protective effects against a variety of diseases. EGCG’s ability to modulate cell signaling pathways associated with oxidative stress, apoptosis, and immune regulation highlights its multifaceted role in health promotion. Emerging evidence underscores EGCG’s therapeutic potential in preventing and managing a range of chronic conditions, including cancer, cardiovascular diseases, neurodegenerative disorders, and metabolic syndromes. Given the growing prevalence of lifestyle-related diseases and the increasing interest in natural compounds, EGCG presents a promising avenue for novel therapeutic strategies. This review aims to summarize current knowledge on EGCG, emphasizing its critical role as a versatile natural bioactive agent with diverse clinical applications. Further exploration in both experimental and clinical settings is essential to fully unlock its therapeutic potential.
Journal Article
Chemical Composition and Biological Activities of Prangos ferulacea Essential Oils
by
Maresca, Viviana
,
Di Napoli, Michela
,
Badalamenti, Natale
in
(Z)-β-ocimene
,
antimicrobial activity
,
Antimicrobial agents
2022
Prangos ferulacea (L.) Lindl, which belongs to the Apiaceae family, is a species that mainly grows in the eastern Mediterranean region and in western Asia. It has been largely used in traditional medicine in several countries and it has been shown to possess several interesting biological properties. With the aim to provide new insights into the phytochemistry and pharmacology of this species, the essential oils of flowers and leaves from a local accession that grows in Sicily (Italy) and has not yet been previously studied were investigated. The chemical composition of both oils, obtained by hydrodistillation from the leaves and flowers, was evaluated by GC-MS. This analysis allowed us to identify a new chemotype, characterized by a large amount of (Z)-β-ocimene. Furthermore, these essential oils have been tested for their possible antimicrobial and antioxidant activity. P. ferulacea essential oils exhibit moderate antimicrobial activity; in particular, the flower essential oil is harmful at low and wide spectrum concentrations. They also exhibit good antioxidant activity in vitro and in particular, it has been shown that the essential oils of the flowers and leaves of P. ferulacea caused a decrease in ROS and an increase in the activity of superoxide dismutase (SOD), catalase (CAT) and glutathione S-transferase (GST) in OZ-stimulated PMNs. Therefore, these essential oils could be considered as promising candidates for pharmaceutical and nutraceutical preparations.
Journal Article
Plants of the Genus Zingiber as a Source of Bioactive Phytochemicals: From Tradition to Pharmacy
by
Yousaf, Zubaida
,
Salehi, Bahare
,
Rigano, Daniela
in
Antimicrobial agents
,
essential oil
,
food preservatives
2017
Plants of the genus Zingiber (Family Zingiberaceae) are widely used throughout the world as food and medicinal plants. They represent very popular herbal remedies in various traditional healing systems; in particular, rhizome of Zingiber spp. plants has a long history of ethnobotanical uses because of a plethora of curative properties. Antimicrobial activity of rhizome essential oil has been extensively confirmed in vitro and attributed to its chemical components, mainly consisting of monoterpene and sesquiterpene hydrocarbons such as α-zingiberene, ar-curcumene, β-bisabolene and β-sesquiphellandrene. In addition, gingerols have been identified as the major active components in the fresh rhizome, whereas shogaols, dehydrated gingerol derivatives, are the predominant pungent constituents in dried rhizome. Zingiber spp. may thus represent a promising and innovative source of natural alternatives to chemical food preservatives. This approach would meet the increasing concern of consumers aware of the potential health risks associated with the conventional antimicrobial agents in food. This narrative review aims at providing a literature overview on Zingiber spp. plants, their cultivation, traditional uses, phytochemical constituents and biological activities.
Journal Article
Antioxidant and Antibacterial Properties of Extracts and Bioactive Compounds in Bryophytes
by
Cianciullo, Piergiorgio
,
Sorbo, Sergio
,
Maresca, Viviana
in
antibacterial
,
Antibiotics
,
antimicrobial
2022
Today global health problems such as increased risks of oxidative stress-related diseases and antibiotic resistance are issues of serious concern. Oxidative stress is considered to be the underlying cause of many contemporary pathological conditions such as neurological disorders, ischemia, cancer, etc. Antibiotic-resistant bacteria are a concerning issue in clinical practice, causing an increase in deadly infections. Bryophytes synthesize an outstanding number of secondary metabolites that have shown several potential therapeutic and nutraceutical applications. Research in the field has led to the isolation and characterization of several compounds (flavonoids, terpenoids, and bibenzyls). Some of these compounds have shown promising in vitro antibacterial activities and antioxidant potential comparable to known natural antioxidants such as ascorbic acid and α-tocopherol. However, the process of developing new drugs from naturally occurring molecules is often an impervious path. In this paper, the current state of research of bryophytic antioxidant and antibacterial applications is discussed.
Journal Article
In-field and in-vitro study of the moss Leptodictyum riparium as bioindicator of toxic metal pollution in the aquatic environment: Ultrastructural damage, oxidative stress and HSP70 induction
by
Sorbo, Sergio
,
Fusaro, Lina
,
Loppi, Stefano
in
Antioxidants
,
Aquatic environment
,
Aquatic plants
2018
This study evaluates the effects of toxic metal pollution in the highly contaminated Sarno River (South Italy), by using the aquatic moss Leptodictyum riparium in bags at 3 representative sites of the river. Biological effects were assessed by metal bioaccumulation, ultrastructural changes, oxidative stress, as Reactive Oxygen Species (ROS) production and Glutathione S-transferase (GST) activity, as well as Heat Shock Proteins 70 (HSP70s) induction. The results showed that L. riparium is a valuable bioindicator for toxic metal pollution of water ecosystem, accumulating different amounts of toxic metals from the aquatic environment. Toxic metal pollution caused severe ultrastructural damage, as well as increased ROS production and induction of GST and HSP70s, in the samples exposed at the polluted sites. To assess the role and the effect of toxic metals on L. riparium, were also cultured in vitro with Cd, Cr, Cu, Fe, Ni, Pb, Zn at the same concentrations as measured at the 3 sites. Ultrastructure, ROS, GST, and HSP70s resulted severely affected by toxic metals. Based on our findings, we confirm L. riparium as a model organism in freshwater biomonitoring surveys, and GST and HSP70s as promising biomarkers of metal toxicity.
Journal Article
Magnetic Emissions from Brake Wear are the Major Source of Airborne Particulate Matter Bioaccumulated by Lichens Exposed in Milan (Italy)
by
Contardo, Tania
,
Sorbo, Sergio
,
Winkler, Aldo
in
Air pollution
,
Atoms & subatomic particles
,
Bioaccumulation
2020
The concentration of selected trace elements and the magnetic properties of samples of the lichen Evernia prunastri exposed for 3 months in Milan (Italy) were investigated to test if magnetic properties can be used as a proxy for the bioaccumulation of chemical elements in airborne particulate matter. Magnetic analysis showed intense properties driven by magnetite-like minerals, leading to significant correlations between magnetic susceptibility and the concentration of Fe, Cr, Cu, and Sb. Selected magnetic particles were characterized by Scanning Electron Microscope and Energy Dispersion System microanalyses, and their composition, morphology and grain size supported their anthropogenic, non-exhaust origin. The overall combination of chemical, morphoscopic and magnetic analyses strongly suggested that brake abrasion from vehicles is the main source of the airborne particles accumulated by lichens. It is concluded that magnetic susceptibility is an excellent parameter for a simple, rapid and cost-effective characterization of atmospheric trace metal pollution using lichens.
Journal Article
Antiproliferative, Antibacterial and Antifungal Activity of the Lichen Xanthoria parietina and Its Secondary Metabolite Parietin
by
Sorbo, Sergio
,
Molinari, Anna
,
Conte, Barbara
in
Anti-Bacterial Agents - chemistry
,
Anti-Bacterial Agents - pharmacology
,
Antifungal Agents - chemistry
2015
Lichens are valuable natural resources used for centuries throughout the world as medicine, food, fodder, perfume, spices and dyes, as well as for other miscellaneous purposes. This study investigates the antiproliferative, antibacterial and antifungal activity of the acetone extract of the lichen Xanthoria parietina (Linnaeus) Theodor Fries and its major secondary metabolite, parietin. The extract and parietin were tested for antimicrobial activity against nine American Type Culture Collection standard and clinically isolated bacterial strains, and three fungal strains. Both showed strong antibacterial activity against all bacterial strains and matched clinical isolates, particularly against Staphylococcus aureus from standard and clinical sources. Among the fungi tested, Rhizoctonia solani was the most sensitive. The antiproliferative effects of the extract and parietin were also investigated in human breast cancer cells. The extract inhibited proliferation and induced apoptosis, both effects being accompanied by modulation of expression of cell cycle regulating genes such as p16, p27, cyclin D1 and cyclin A. It also mediated apoptosis by activating extrinsic and intrinsic cell death pathways, modulating Tumor Necrosis Factor-related apoptosis-inducing ligand (TRAIL) and B-cell lymphoma 2 (Bcl-2), and inducing Bcl-2-associated agonist of cell death (BAD) phosphorylation. Our results indicate that Xanthoria parietina is a major potential source of antimicrobial and anticancer substances.
Journal Article
The Antioxidant Properties and Protective Capacity of Prangos trifida and Cachrys cristata Essential Oils against Cd Stress in Lunularia cruciata and Brassica napus
by
Maresca, Viviana
,
Badalamenti, Natale
,
Basile, Adriana
in
antioxidant activity
,
antioxidant enzymes
,
Antioxidants
2023
The genera Prangos Lindl. and Cachrys L., for a long time interpreted as a single genus but today distinct and separate, and both belonging to the majestic Apiaceae family, are species with a large distribution and are used in ethnomedicine in various countries, especially in Asian countries. In this context, we investigated the chemical characteristics and biological properties of two essential oils (EOs) obtained from different specimens, namely Cachrys cristata (Cc) and Prangos trifida (Pt). The chemical composition of the two EOs was investigated by GC-MS analysis. From gas-chromatography analyses, while the (Cc) EO was rich in β-myrcene (45.34%), allo-ocimene (10.90%), and 2,4,6-trimethylbenzaldehyde (23.47%), the (Pt) EO was characterized by moderate amounts of α-pinene (8.85%), sylvestrene (11.32%), α-phellandrene (12.14%), (Z)-β-ocimene (18.12%), and finally, p-mentha-1,3,8-triene (9.56%). Furthermore, the protective and antioxidant capacity of (Pt) and (Cc) EOs on Lunularia cruciata and Brassica napus exposed to cadmium (Cd) stress was studied. To study these possible effects, the liverwort and oilseed rape, previously pretreated with both EOs, were subsequently subjected to oxidative stress by treatment with Cd. Then, DNA damage and antioxidant enzyme activity were measured in both EOs-pretreated and untreated samples to examine EOs-induced tolerance to Cd toxicity. The results indicate that (Pt) and (Cc) EOs have antioxidant and protective capacity in modulating the redox state through the antioxidant pathway by reducing oxidative stress induced by Cd. Furthermore, B. napus was found to be a more resistant and tolerant species than L. cruciata.
Journal Article
Functional indicators of response mechanisms to nitrogen deposition, ozone, and their interaction in two Mediterranean tree species
2017
The effects of nitrogen (N) deposition, tropospheric ozone (O3) and their interaction were investigated in two Mediterranean tree species, Fraxinus ornus L. (deciduous) and Quercus ilex L. (evergreen), having different leaf habits and resource use strategies. An experiment was conducted under controlled condition to analyse how nitrogen deposition affects the ecophysiological and biochemical traits, and to explore how the nitrogen-induced changes influence the response to O3. For both factors we selected realistic exposures (20 kg N ha-1 yr-1 and 80 ppb h for nitrogen and O3, respectively), in order to elucidate the mechanisms implemented by the plants. Nitrogen addition resulted in higher nitrogen concentration at the leaf level in F. ornus, whereas a slight increase was detected in Q. ilex. Nitrogen enhanced the maximum rate of assimilation and ribulose 1,5-bisphosphate regeneration in both species, whereas it influenced the light harvesting complex only in the deciduous F. ornus that was also affected by O3 (reduced assimilation rate and accelerated senescence-related processes). Conversely, Q. ilex developed an avoidance mechanism to cope with O3, confirming a substantial O3 tolerance of this species. Nitrogen seemed to ameliorate the harmful effects of O3 in F. ornus: the hypothesized mechanism of action involved the production of nitrogen oxide as the first antioxidant barrier, followed by enzymatic antioxidant response. In Q. ilex, the interaction was not detected on gas exchange and photosystem functionality; however, in this species, nitrogen might stimulate an alternative antioxidant response such as the emission of volatile organic compounds. Antioxidant enzyme activity was lower in plants treated with both O3 and nitrogen even though reactive oxygen species production did not differ between the treatments.
Journal Article
Antimicrobial, Antibiofilm, and Antioxidant Properties of Essential Oil of Foeniculum vulgare Mill. Leaves
by
Di Napoli, Michela
,
Varcamonti, Mario
,
Castagliuolo, Giusy
in
Alcoholic beverages
,
anise
,
antibiofilm property
2022
Foeniculum vulgare (Apiaceae) is an aromatic fennel with important practices in medicinal and traditional fields, used in the treatment of digestive complications, and gastrointestinal and respiratory disorders. Its leaves and stems, tender and fresh, are used in the production of pasta dressing and main courses, while its seeds, with a strong smell of anise, are excellent flavoring for baked goods, meat dishes, fish, and alcoholic beverages. The aim of this work is concerning the extraction of essential oil (EO) from the leaves of F. vulgare subsp. vulgare var. vulgare, investigating antimicrobial, antibiofilm, and antioxidant efficacy. In particular, GC-MS analysis showed how the chemical composition of EO was influenced by the massive presence of monoterpene hydrocarbons (α-pinene 33.75%) and phenylpropanoids (estragole 25.06%). F. vulgare subsp. vulgare var. vulgare EO shows excellent antimicrobial activity against both Gram-positive and Gram-negative strains. This EO can inhibit biofilm formation at very low concentrations and has a good ability to scavenge oxygen radicals in vitro. F. vulgare subsp. vulgare var. vulgare EO also has an increased activity of superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPx) enzymes and decreased ROS levels in zymosan opsonized PMNs (OZ).
Journal Article