Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
12 result(s) for "Basiri, Marcus L."
Sort by:
Obesity remodels activity and transcriptional state of a lateral hypothalamic brake on feeding
The current obesity epidemic is a major worldwide health concern. Despite the consensus that the brain regulates energy homeostasis, the neural adaptations governing obesity are unknown. Using a combination of high-throughput single-cell RNA sequencing and longitudinal in vivo two-photon calcium imaging, we surveyed functional alterations of the lateral hypothalamic area (LHA)–a highly conserved brain region that orchestrates feeding–in a mouse model of obesity. The transcriptional profile of LHA glutamatergic neurons was affected by obesity, exhibiting changes indicative of altered neuronal activity. Encoding properties of individual LHA glutamatergic neurons were then tracked throughout obesity, revealing greatly attenuated reward responses. These data demonstrate how diet disrupts the function of an endogenous feeding suppression system to promote overeating and obesity.
Molecular and anatomical characterization of parabrachial neurons and their axonal projections
The parabrachial nucleus (PBN) is a major hub that receives sensory information from both internal and external environments. Specific populations of PBN neurons are involved in behaviors including food and water intake, nociceptive responses, breathing regulation, as well as learning and responding appropriately to threatening stimuli. However, it is unclear how many PBN neuron populations exist and how different behaviors may be encoded by unique signaling molecules or receptors. Here we provide a repository of data on the molecular identity, spatial location, and projection patterns of dozens of PBN neuron subclusters. Using single-cell RNA sequencing, we identified 21 subclusters of neurons in the PBN and neighboring regions. Multiplexed in situ hybridization showed many of these subclusters are enriched within specific PBN subregions with scattered cells in several other regions. We also provide detailed visualization of the axonal projections from 21 Cre-driver lines of mice. These results are all publicly available for download and provide a foundation for further interrogation of PBN functions and connections.
Conserved TCP domain of Sas-4/CPAP is essential for pericentriolar material tethering during centrosome biogenesis
Pericentriolar material (PCM) recruitment to centrioles forms a key step in centrosome biogenesis. Deregulation of this process leads to centrosome aberrations causing disorders, one of which is autosomal recessive primary microcephaly (MCPH), a neurodevelopmental disorder where brain size is reduced. During PCM recruitment, the conserved centrosomal protein Sas-4/CPAP/MCPH6, known to play a role in centriole formation, acts as a scaffold for cytoplasmic PCM complexes to bind and then tethers them to centrioles to form functional centrosomes. To understand Sas-4’s tethering role, we determined the crystal structure of its T complex protein 10 (TCP) domain displaying a solvent-exposed single-layer of β-sheets fold. This unique feature of the TCP domain suggests that it could provide an “extended surface-like” platform to tether the Sas-4–PCM scaffold to a centriole. Functional studies in Drosophila , human cells, and human induced pluripotent stem cell-derived neural progenitor cells were used to test this hypothesis, where point mutations within the 9–10th β-strands (β9–10 mutants including a MCPH-associated mutation) perturbed PCM tethering while allowing Sas-4/CPAP to scaffold cytoplasmic PCM complexes. Specifically, the Sas-4 β9–10 mutants displayed perturbed interactions with Ana2, a centrosome duplication factor, and Bld-10, a centriole microtubule-binding protein, suggesting a role for the β9–10 surface in mediating protein–protein interactions for efficient Sas-4–PCM scaffold centriole tethering. Hence, we provide possible insights into how centrosomal protein defects result in human MCPH and how Sas-4 proteins act as a vehicle to tether PCM complexes to centrioles independent of its well-known role in centriole duplication.
Gene expression changes following chronic antipsychotic exposure in single cells from mouse striatum
Schizophrenia is an idiopathic psychiatric disorder with a high degree of polygenicity. Evidence from genetics, single-cell transcriptomics, and pharmacological studies suggest an important, but untested, overlap between genes involved in the etiology of schizophrenia and the cellular mechanisms of action of antipsychotics. To directly compare genes with antipsychotic-induced differential expression to genes involved in schizophrenia, we applied single-cell RNA-sequencing to striatal samples from male C57BL/6 J mice chronically exposed to a typical antipsychotic (haloperidol), an atypical antipsychotic (olanzapine), or placebo. We identified differentially expressed genes in three cell populations identified from the single-cell RNA-sequencing (medium spiny neurons [MSNs], microglia, and astrocytes) and applied multiple analysis pipelines to contextualize these findings, including comparison to GWAS results for schizophrenia. In MSNs in particular, differential expression analysis showed that there was a larger share of differentially expressed genes (DEGs) from mice treated with olanzapine compared with haloperidol. DEGs were enriched in loci implicated by genetic studies of schizophrenia, and we highlighted nine genes with convergent evidence. Pathway analyses of gene expression in MSNs highlighted neuron/synapse development, alternative splicing, and mitochondrial function as particularly engaged by antipsychotics. In microglia, we identified pathways involved in microglial activation and inflammation as part of the antipsychotic response. In conclusion, single-cell RNA sequencing may provide important insights into antipsychotic mechanisms of action and links to findings from psychiatric genomic studies.
Tubulin nucleotide status controls Sas-4-dependent pericentriolar material recruitment
Avidor-Reiss and colleagues show that the nucleotide status of tubulin regulates recruitment of pericentriolar material. Binding of GTP-bound tubulin to the Sas-4 centrosomal protein prevents the Sas-4-dependent formation of centrosomal protein complexes, whereas the Sas-4-stimulated hydrolysis of tubulin–GTP into tubulin–GDP has the opposite effect. Regulated centrosome biogenesis is required for accurate cell division and for maintaining genome integrity 1 . Centrosomes consist of a centriole pair surrounded by a protein network known as pericentriolar material 1 (PCM). PCM assembly is a tightly regulated, critical step that determines the size and capability of centrosomes 2 , 3 , 4 . Here, we report a role for tubulin in regulating PCM recruitment through the conserved centrosomal protein Sas-4. Tubulin directly binds to Sas-4; together they are components of cytoplasmic complexes of centrosomal proteins 5 , 6 . A Sas-4 mutant, which cannot bind tubulin, enhances centrosomal protein complex formation and has abnormally large centrosomes with excessive activity. These results suggest that tubulin negatively regulates PCM recruitment. Whereas tubulin–GTP prevents Sas-4 from forming protein complexes, tubulin–GDP promotes it. Thus, the regulation of PCM recruitment by tubulin depends on its GTP/GDP-bound state. These results identify a role for tubulin in regulating PCM recruitment independent of its well-known role as a building block of microtubules 7 . On the basis of its guanine-bound state, tubulin can act as a molecular switch in PCM recruitment.
Esr1-Dependent Signaling and Transcriptional Maturation in the Medial Preoptic Area of the Hypothalamus Shapes the Development of Mating Behavior during Adolescence
Mating and other behaviors emerge during adolescence through the coordinated actions of steroid hormone signaling throughout the nervous system and periphery. In this study, we investigated the transcriptional dynamics of the medial preoptic area (MPOA), a critical region for reproductive behavior, using single-cell RNA sequencing (scRNAseq) and hybridization techniques in male and female mice throughout adolescence development. Our findings reveal that estrogen receptor 1 (Esr1) plays a pivotal role in the transcriptional maturation of GABAergic neurons within the MPOA during adolescence. Deletion of the estrogen receptor gene, , in GABAergic neurons (Vgat+) disrupted the developmental progression of mating behaviors in both sexes, while its deletion in glutamatergic neurons (Vglut2+) had no observable effect. In males and females, these neurons displayed distinct transcriptional trajectories, with hormone-dependent gene expression patterns emerging throughout adolescence and regulated by . deletion in MPOA GABAergic neurons, prior to adolescence, arrested adolescent transcriptional progression of these cells and uncovered sex-specific gene-regulatory networks associated with signaling. Our results underscore the critical role of in orchestrating sex-specific transcriptional dynamics during adolescence, revealing gene regulatory networks implicated in the development of hypothalamic controlled reproductive behaviors.
Transcriptional and Spatial Resolution of Cell Types in the Mammalian Habenula
The habenula complex is appreciated as a critical regulator of motivated and pathological behavioral states via its output to midbrain nuclei. Despite this, transcriptional definition of cell populations that comprise both the medial (MHb) and lateral habenular (LHb) subregions in mammals remain undefined. To resolve this, we performed single-cell transcriptional profiling and highly multiplexed in situ hybridization experiments of the mouse habenula complex in naive mice and those exposed to an acute aversive stimulus. Transcriptionally distinct neuronal cell types identified within the MHb and LHb, were spatially defined, and differentially engaged by aversive stimuli. Cell types identified in mice, also displayed a high degree of transcriptional similarity to those previously described in zebrafish, highlighting the well conserved nature of habenular cell types across the phylum. These data identify key molecular targets within habenula cell types, and provide a critical resource for future studies.
Pubertal sex hormones control transcriptional trajectories in the medial preoptic area
Pubertal maturation aids development of emotion, cognition, and reproduction. We investigated transcriptional dynamics in the medial preoptic area (MPOA), a hypothalamic center for reproductive behaviors, in male and female mice at single-cell resolution (scRNAseq) during puberty. Defined subsets of neurons expressing Slc32a1 and Esr1 (Vgat+ Esr1+) were the most transcriptionally dynamic compared to other cell types throughout puberty. These cell type specific transcriptional progressions towards adulthood were bidirectionally controlled by the levels of circulating testosterone and estradiol. Selective deletion of Esr1 in Slc32a1-expressing cells in the MPOA prior to puberty arrested transcriptional progression and revealed a sexually dimorphic gene-regulatory network governed by Esr1. Deletion of Esr1 in Vgat+ cells prevented the development of mating behavior in both sexes. These analyses reveal both sexually common and dimorphic transcriptional progressions during puberty as well as their regulatory mechanisms, which have important implications towards understanding adaptative and maladaptive processes governing adolescent brain development. Competing Interest Statement The authors have declared no competing interest.