Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
34 result(s) for "Basto, Renata"
Sort by:
A novel DNA repair-independent role for Gen nuclease in promoting unscheduled polyploidy cell proliferation
Unscheduled whole genome duplication (WGD), also described as unscheduled or non-physiological polyploidy, can lead to genetic instability and is commonly observed in human cancers. WGD generates DNA damage due to scaling defects between replication factors and DNA content. As a result DNA damage repair mechanisms are thought to be critical for ensuring cell viability and proliferation under these conditions. In this study, we explored the role of homologous recombination and Holliday junction resolution in non-physiological polyploidy in vivo . Using Drosophila genetics and high-resolution imaging, we identified a key and surprising role for Gen/Gen1 nuclease. Our findings revealed that loss-of-function and overexpression of Gen have opposing effects, delaying or accelerating the proliferation of polyploid cells, respectively. These changes ultimately impact cell proliferation, nuclear asynchrony and mitotic DNA damage levels. Surprisingly, our findings show that this effect is unrelated with the expected Gen’s function in DNA damage repair. Instead, Gen seems to influence polyploid DNA replication rates. This work identifies a novel function for Gen nuclease and provides new insights into the cellular and molecular requirements of non-physiological polyploidy.
Short-term molecular consequences of chromosome mis-segregation for genome stability
Chromosome instability (CIN) is the most common form of genome instability and is a hallmark of cancer. CIN invariably leads to aneuploidy, a state of karyotype imbalance. Here, we show that aneuploidy can also trigger CIN. We found that aneuploid cells experience DNA replication stress in their first S-phase and precipitate in a state of continuous CIN. This generates a repertoire of genetically diverse cells with structural chromosomal abnormalities that can either continue proliferating or stop dividing. Cycling aneuploid cells display lower karyotype complexity compared to the arrested ones and increased expression of DNA repair signatures. Interestingly, the same signatures are upregulated in highly-proliferative cancer cells, which might enable them to proliferate despite the disadvantage conferred by aneuploidy-induced CIN. Altogether, our study reveals the short-term origins of CIN following aneuploidy and indicates the aneuploid state of cancer cells as a point mutation-independent source of genome instability, providing an explanation for aneuploidy occurrence in tumors. Chromosomal instability leads to aneuploidy, a state of karyotype imbalance. By inducing controlled chromosome mis-segregation, Santaguida and colleagues show that aneuploidy can also instigate chromosomal instability.
Aneuploidy causes premature differentiation of neural and intestinal stem cells
Aneuploidy is associated with a variety of diseases such as cancer and microcephaly. Although many studies have addressed the consequences of a non-euploid genome in cells, little is known about their overall consequences in tissue and organism development. Here we use two different mutant conditions to address the consequences of aneuploidy during tissue development and homeostasis in Drosophila . We show that aneuploidy causes brain size reduction due to a decrease in the number of proliferative neural stem cells (NSCs), but not through apoptosis. Instead, aneuploid NSCs present an extended G1 phase, which leads to cell cycle exit and premature differentiation. Moreover, we show that this response to aneuploidy is also present in adult intestinal stem cells but not in the wing disc. Our work highlights a neural and intestine stem cell-specific response to aneuploidy, which prevents their proliferation and expansion. It is unclear why certain tissues are more susceptible to the consequences of aneuploidy. Here, in Drosophila , Gogendeau et al. identify aneuploidy as the cause of lengthened G1 and premature differentiation in both neural and adult intestinal stem cells, which prevents cells with abnormal genomes from cycling.
The microcephaly protein Asp regulates neuroepithelium morphogenesis by controlling the spatial distribution of myosin II
Mutations in ASPM are the most frequent cause of microcephaly, a disorder characterized by reduced brain size at birth. ASPM is recognized as a major regulator of brain size, yet its role during neural development remains poorly understood. Moreover, the role of ASPM proteins in invertebrate brain morphogenesis has never been investigated. Here, we characterized the function of the Drosophila ASPM orthologue, Asp, and found that asp mutants present severe defects in brain size and neuroepithelium morphogenesis. We show that size reduction depends on the mitotic function of Asp, whereas regulation of tissue shape depends on an uncharacterized function. Asp interacts with myosin II regulating its polarized distribution along the apico-basal axis. In the absence of Asp, mislocalization of myosin II results in interkinetic nuclear migration and tissue architecture defects. We propose that Asp regulates neuroepithelium morphogenesis through myosin-II-mediated structural and mechanical processes to maintain force balance and tissue cohesiveness. The microcephaly protein ASPM is required for correct spindle positioning in neuroepithelial cells. Basto and colleagues demonstrate that, in addition to having a role in cell division, the fly ASPM orthologue Asp is important for the maintenance of neuroepithelium integrity by mediating myosin II apico-basal polarity.
Topical Delivery of Niacinamide to Skin Using Hybrid Nanogels Enhances Photoprotection Effect
Niacinamide (NIA) has been widely used in halting the features of ageing by acting as an antioxidant and preventing dehydration. NIA’s physicochemical properties suggest difficulties in surpassing the barrier imposed by the stratum corneum layer to reach the target in the skin. To improve cutaneous delivery of NIA, a hybrid nanogel was designed using carrageenan and polyvinylpyrrolidone polymers combined with jojoba oil as a permeation enhancer. Three different types of transethosomes were prepared by the thin-film hydration method, made distinct by the presence of either an edge activator or a permeation enhancer, to allow for a controlled delivery of NIA. Formulations were characterized by measurements of size, polydispersity index, zeta potential, encapsulation efficiency, and loading capacity, and by evaluating their chemical interactions and morphology. Skin permeation assays were performed using Franz diffusion cells. The hybrid hydrogels exhibited robust, porous, and highly aligned macrostructures, and when present, jojoba oil changed their morphology. Skin permeation studies with transethosomes-loaded hydrogels showed that nanogels per se exhibit a more controlled and enhanced permeation, in particular when jojoba oil was present in the transethosomes. These promising nanogels protected the human keratinocytes from UV radiation, and thus can be added to sunscreens or after-sun lotions to improve skin protection.
A catalog of numerical centrosome defects in epithelial ovarian cancers
Centrosome amplification, the presence of more than two centrosomes in a cell is a common feature of most human cancer cell lines. However, little is known about centrosome numbers in human cancers and whether amplification or other numerical aberrations are frequently present. To address this question, we have analyzed a large cohort of primary human epithelial ovarian cancers (EOCs) from 100 patients. We found that rigorous quantitation of centrosome number in tumor samples was extremely challenging due to tumor heterogeneity and extensive tissue disorganization. Interestingly, even if centrosome clusters could be identified, the incidence of centrosome amplification was not comparable to what has been described in cultured cancer cells. Surprisingly, centrosome loss events where a few or many nuclei were not associated with centrosomes were clearly noticed and overall more frequent than centrosome amplification. Our findings highlight the difficulty of characterizing centrosome numbers in human tumors, while revealing a novel paradigm of centrosome number defects in EOCs. Synopsis Characterization of the centrosome number in epithelial ovarian cancers (EOCs) is challenging because these tumors are extremely disorganized and heterogeneous in respect to centrosome number. Centrosomes are the major microtubule‐organizing center of animal cells. Centrosome number normally varies between 1 and 2 according to cell cycle stage. We characterized centrosome numbers in 100 EOCs. Intra and inter‐tumor heterogeneity for centrosome number was noticed. In EOCs, cells with amplified centrosomes, which have been described in cancer cell lines, are not common. Cells without centrosomes are frequently found in EOCs. Graphical Abstract Characterization of the centrosome number in epithelial ovarian cancers (EOCs) is challenging because these tumors are extremely disorganized and heterogeneous in respect to centrosome number.
Bug22 influences cilium morphology and the post-translational modification of ciliary microtubules
Cilia and flagella are organelles essential for motility and sensing of environmental stimuli. Depending on the cell type, cilia acquire a defined set of functions and, accordingly, are built with an appropriate length and molecular composition. Several ciliary proteins display a high degree of conservation throughout evolution and mutations in ciliary genes are associated with various diseases such as ciliopathies and infertility. Here, we describe the role of the highly conserved ciliary protein, Bug22, in Drosophila. Previous studies in unicellular organisms have shown that Bug22 is required for proper cilia function, but its exact role in ciliogenesis has not been investigated yet. Null Bug22 mutant flies display cilia-associated phenotypes and nervous system defects. Furthermore, sperm differentiation is blocked at the individualization stage, due to impaired migration of the individualization machinery. Tubulin post-translational modifications (PTMs) such as polyglycylation, polyglutamylation or acetylation, are determinants of microtubule (MT) functions and stability in centrioles, cilia and neurons. We found defects in the timely incorporation of polyglycylation in sperm axonemal MTs of Bug22 mutants. In addition, we found that depletion of human Bug22 in RPE1 cells resulted in the appearance of longer cilia and reduced axonemal polyglutamylation. Our work identifies Bug22 as a protein that plays a conserved role in the regulation of PTMs of the ciliary axoneme.
Kinetochore dynein: its dynamics and role in the transport of the Rough deal checkpoint protein
We describe the dynamics of kinetochore dynein–dynactin in living Drosophila embryos and examine the effect of mutant dynein on the metaphase checkpoint. A functional conjugate of dynamitin with green fluorescent protein accumulates rapidly at prometaphase kinetochores, and subsequently migrates off kinetochores towards the poles during late prometaphase and metaphase. This behaviour is seen for several metaphase checkpoint proteins, including Rough deal (Rod). In neuroblasts, hypomorphic dynein mutants accumulate in metaphase and block the normal redistribution of Rod from kinetochores to microtubules. By transporting checkpoint proteins away from correctly attached kinetochores, dynein might contribute to shutting off the metaphase checkpoint, allowing anaphase to ensue.
Rough Deal and Zw10 are required for the metaphase checkpoint in Drosophila
The metaphase–anaphase transition during mitosis is carefully regulated in order to assure high-fidelity transmission of genetic information to the daughter cells. A surveillance mechanism known as the metaphase checkpoint (or spindle-assembly checkpoint) monitors the attachment of kinetochores to the spindle microtubules, and inhibits anaphase onset until all chromosomes have achieved a proper bipolar orientation on the spindle. Defects in this checkpoint lead to premature anaphase onset, and consequently to greatly increased rates of aneuploidy. Here we show that the Drosophila kinetochore components Rough deal (Rod) and Zeste-White 10 (Zw10) are required for the proper functioning of the metaphase checkpoint in flies. Drosophila cells lacking either ROD or Zw10 exhibit a phenotype that is similar to that of bub1 mutants — they do not arrest in metaphase in response to spindle damage, but instead separate sister chromatids, degrade cyclin B and exit mitosis. These are the first checkpoint components to be identified that do not have obvious homologues in budding yeast.