Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
64,157 result(s) for "Basu, S."
Sort by:
Neonatal sepsis: the gut connection
Colonization of the neonatal gut takes place immediately after birth. Bacteria that get colonized are considered to be “normal” flora derived principally from the mother and the immediate environment. However, for some neonates, the colonization of the gut, particularly with potential pathogens, may lead to subsequent infections or sepsis. The immune system and the gut barrier in neonates is vulnerable, with decreased acid secretion, low levels of protective mucous, and decreased motility, particularly in those who are premature and of low birth weight. This makes the neonatal gut especially prone to colonization with aerobic Gram-negative bacilli (GNB). And these GNB may later, under circumstances favorable to them, cause disease in the neonates. In developing countries, it is the GNB that cause the majority of the infections. In addition, the use of antibiotics in the neonatal intensive care unit also triggers colonization with antibiotic-resistant bacteria. This review discusses various aspects of neonatal gut colonization, neonatal sepsis, and tries to gather support to understand the connection between the gut and subsequent sepsis in neonates.
A Fast Finite Difference Method for Two-Dimensional Space-Fractional Diffusion Equations
Fractional diffusion equations model phenomena exhibiting anomalous diffusion that cannot be modeled accurately by second-order diffusion equations. Because of the nonlocal property of fractional differential operators, numerical methods for space-fractional diffusion equations generate complicated dense or full coefficient matrices. Consequently, these numerical methods were traditionally solved by Gaussian elimination, which requires computational work of $O(N^3)$ per time step and $O(N^2)$ of memory, where $N$ is the number of spatial grid points in the discretization. The significant computational work and memory requirement of the numerical methods impose a serious challenge for the numerical simulation of two- and especially three-dimensional space-fractional diffusion equations. We develop a fast and yet accurate solution method for the implicit finite difference discretization of space-fractional diffusion equations in two space dimensions by carefully analyzing the structure of the coefficient matrix of the finite difference method and delicately decomposing the coefficient matrix into a combination of sparse and structured dense matrices. The fast method has a computational work count of $O(N \\log N)$ per iteration and a memory requirement of $O(N)$, while retaining the same accuracy as the underlying finite difference method solved with Gaussian elimination. Numerical experiments show that the fast method has a significant reduction of CPU time, from two months and eight days as consumed by the traditional method to less than 40 minutes, with less than one ten-thousandth of the memory required by the traditional method, in the context of a two-dimensional space-fractional diffusion equation with 512 $\\times$ 512 = 262,144 spatial nodes and 512 time steps. This demonstrates the utility of the method. [PUBLICATION ABSTRACT]
Hot super-Earths stripped by their host stars
Simulations predict that hot super-Earth sized exoplanets can have their envelopes stripped by photoevaporation, which would present itself as a lack of these exoplanets. However, this absence in the exoplanet population has escaped a firm detection. Here we demonstrate, using asteroseismology on a sample of exoplanets and exoplanet candidates observed during the Kepler mission that, while there is an abundance of super-Earth sized exoplanets with low incident fluxes, none are found with high incident fluxes. We do not find any exoplanets with radii between 2.2 and 3.8 Earth radii with incident flux above 650 times the incident flux on Earth. This gap in the population of exoplanets is explained by evaporation of volatile elements and thus supports the predictions. The confirmation of a hot-super-Earth desert caused by evaporation will add an important constraint on simulations of planetary systems, since they must be able to reproduce the dearth of close-in super-Earths. Theory predicts a deficit of super-Earth sized planets, which orbit close to their host star. Here, Lundkvist et al . use data from the NASA Kepler mission to show that this deficit is also seen in observations, thereby providing new insight into exoplanetary systems.
Compact IF2 allows initiator tRNA accommodation into the P site and gates the ribosome to elongation
During translation initiation, initiation factor 2 (IF2) holds initiator transfer RNA (fMet-tRNA i fMet ) in a specific orientation in the peptidyl (P) site of the ribosome. Upon subunit joining IF2 hydrolyzes GTP and, concomitant with inorganic phosphate (P i ) release, changes conformation facilitating fMet-tRNA i fMet accommodation into the P site and transition of the 70 S ribosome initiation complex (70S-IC) to an elongation-competent ribosome. The mechanism by which IF2 separates from initiator tRNA at the end of translation initiation remains elusive. Here, we report cryo-electron microscopy (cryo-EM) structures of the 70S-IC from Pseudomonas aeruginosa bound to compact IF2-GDP and initiator tRNA. Relative to GTP-bound IF2, rotation of the switch 2 α-helix in the G-domain bound to GDP unlocks a cascade of large-domain movements in IF2 that propagate to the distal tRNA-binding domain C2. The C2-domain relocates 35 angstroms away from tRNA, explaining how IF2 makes way for fMet-tRNA i fMet accommodation into the P site. Our findings provide the basis by which IF2 gates the ribosome to the elongation phase. Initiation factor 2 (IF2) guides the ribosome to the elongation phase of protein synthesis. Here, Basu et al. provide structural insights into how compact IF2-GDP makes way for initiator tRNA accommodation into the peptidyl (P) site of the ribosome.
Milk intake and risk of mortality and fractures in women and men: cohort studies
Objective To examine whether high milk consumption is associated with mortality and fractures in women and men.Design Cohort studies.Setting Three counties in central Sweden.Participants Two large Swedish cohorts, one with 61 433 women (39-74 years at baseline 1987-90) and one with 45 339 men (45-79 years at baseline 1997), were administered food frequency questionnaires. The women responded to a second food frequency questionnaire in 1997.Main outcome measure Multivariable survival models were applied to determine the association between milk consumption and time to mortality or fracture.Results During a mean follow-up of 20.1 years, 15 541 women died and 17 252 had a fracture, of whom 4259 had a hip fracture. In the male cohort with a mean follow-up of 11.2 years, 10 112 men died and 5066 had a fracture, with 1166 hip fracture cases. In women the adjusted mortality hazard ratio for three or more glasses of milk a day compared with less than one glass a day was 1.93 (95% confidence interval 1.80 to 2.06). For every glass of milk, the adjusted hazard ratio of all cause mortality was 1.15 (1.13 to 1.17) in women and 1.03 (1.01 to 1.04) in men. For every glass of milk in women no reduction was observed in fracture risk with higher milk consumption for any fracture (1.02, 1.00 to 1.04) or for hip fracture (1.09, 1.05 to 1.13). The corresponding adjusted hazard ratios in men were 1.01 (0.99 to 1.03) and 1.03 (0.99 to 1.07). In subsamples of two additional cohorts, one in males and one in females, a positive association was seen between milk intake and both urine 8-iso-PGF2α (a biomarker of oxidative stress) and serum interleukin 6 (a main inflammatory biomarker).Conclusions High milk intake was associated with higher mortality in one cohort of women and in another cohort of men, and with higher fracture incidence in women. Given the observational study designs with the inherent possibility of residual confounding and reverse causation phenomena, a cautious interpretation of the results is recommended.
STABLE ATMOSPHERIC BOUNDARY LAYERS AND DIURNAL CYCLES
The representation of the atmospheric boundary layer is an important part of weather and climate models and impacts many applications such as air quality and wind energy. Over the years, the performance in modeling 2-m temperature and 10-m wind speed has improved but errors are still significant. This is in particular the case under clear skies and low wind speed conditions at night as well as during winter in stably stratified conditions over land and ice. In this paper, the authors review these issues and provide an overview of the current understanding and model performance. Results from weather forecast and climate models are used to illustrate the state of the art as well as findings and recommendations from three intercomparison studies held within the Global Energy and Water Exchanges (GEWEX) Atmospheric Boundary Layer Study (GABLS). Within GABLS, the focus has been on the examination of the representation of the stable boundary layer and the diurnal cycle over land in clear-sky conditions. For this purpose, single-column versions of weather and climate models have been compared with observations, research models, and large-eddy simulations. The intercomparison cases are based on observations taken in the Arctic, Kansas, and Cabauw in the Netherlands. From these studies, we find that even for the noncloudy boundary layer important parameterization challenges remain.
Influences of aqua-(2-formylbenzoato) triphenyltin(IV) on regression of hypoxic solid tumor through mitochondrial mediated pathway by inhibiting Hif-1 alpha
Tumor hypoxia is the major hindrance behind cancer chemotherapy and the foremost reason for the less effectiveness of most anticancer drugs. We herein inquire into the mechanistic part and therapeutic efficacy of our previously reported compound, aqua-(2-formylbenzoato) triphenyltin (IV) (abbreviated as OTC), in a hypoxic solid tumor-bearing mouse model (BALB/c). In addition to solid tumors, we investigated the therapeutic potential of OTC in intraperitoneal tumor and in in vitro system. Following treatment, mitochondrial dynamics, tumor load regression, survival analysis and histopathological parameters were analyzed. Furthermore, the differential expression levels of cleaved PARP-1, Hif-1α, VEGF and apoptotic genes such as Bax, Bcl-2, p53, and caspase 3 at the mRNA and protein levels were assessed. Our findings demonstrate that OTC significantly induces tumor regression and increased survivability by down regulating the expression of the hypoxia-associated genes Hif-1α and VEGF while elevating the levels of cleaved PARP-1 and p53. In contrast, the commercially available drug doxorubicin was found less effective and failed to respond in the tumor microenvironment. Furthermore, increased mitochondrial aggregation and membrane permeability and activation of Bax, caspase 3 and caspase-9 and release of Cytochrome-c from the mitochondrial membrane at RNA level confirms the mitochondrial pathway of apoptosis. Therefore, our present findings reveal that newly synthesized OTC potentially induces apoptosis and could be a promising compound against the tumor microenvironment.
Structure–property correlation in a novel ZrB2–SiC ultrahigh-temperature ceramic composite with Al-alloy sinter additive
In this study, the effect of minor (5 vol.%) addition of Al–10Si–0.2Mg (composition in wt.%) pre-alloyed powder on densification, microstructure and mechanical behaviour of spark plasma-sintered ZrB2-20 vol.% SiC composite has been investigated. The sintered composite records a relative density of 99.83% despite being processed at a relatively low temperature (1700 °C) in argon atmosphere. Interestingly, ZrB2–20SiC–5AlSiMg composite does not undergo any shape distortion though the liquidus temperature of this metallic alloy additive is quite low (~ 592 °C). Extensive phase and microstructure analyses by appropriate techniques indicate that no free or unreacted AlSiMg is detected in the sintered composite. Thermodynamic analysis suggests that AlSiMg serves as a reducing agent for ZrO2 oxide scale and forms respective high-melting oxide phases. Raman analysis confirms that incorporation of 5 vol.% AlSiMg enhances residual compressive stress of SiC grains. Furthermore, the addition of AlSiMg is found to enhance the thermal shock resistance of the composite. In brief, this new AlSiMg additive results in better densification (99.83%) and hence an attractive combination of useful mechanical properties like Vickers microhardness (17.63 ± 0.54 GPa), nano-hardness (18.62 ± 1.23 GPa), indentation fracture toughness (7.21 ± 1.13 MPa m), elastic modulus (432.64 ± 32.90 GPa) and flexural strength (659.25 ± 32.40 MPa) in the AlSiMg-added ZrB2-20SiC composite.
Global CO2 fluxes estimated from GOSAT retrievals of total column CO2
We present one of the first estimates of the global distribution of CO2 surface fluxes using total column CO2 measurements retrieved by the SRON-KIT RemoTeC algorithm from the Greenhouse gases Observing SATellite (GOSAT). We derive optimized fluxes from June 2009 to December 2010. We estimate fluxes from surface CO2 measurements to use as baselines for comparing GOSAT data-derived fluxes. Assimilating only GOSAT data, we can reproduce the observed CO2 time series at surface and TCCON sites in the tropics and the northern extra-tropics. In contrast, in the southern extra-tropics GOSAT XCO2 leads to enhanced seasonal cycle amplitudes compared to independent measurements, and we identify it as the result of a land-sea bias in our GOSAT XCO2 retrievals. A bias correction in the form of a global offset between GOSAT land and sea pixels in a joint inversion of satellite and surface measurements of CO2 yields plausible global flux estimates which are more tightly constrained than in an inversion using surface CO2 data alone. We show that assimilating the bias-corrected GOSAT data on top of surface CO2 data (a) reduces the estimated global land sink of CO2 , and (b) shifts the terrestrial net uptake of carbon from the tropics to the extra-tropics. It is concluded that while GOSAT total column CO2 provide useful constraints for source-sink inversions, small spatiotemporal biases - beyond what can be detected using current validation techniques - have serious consequences for optimized fluxes, even aggregated over continental scales.
Understanding evolution of vortex rings in viscous fluids
The evolution of vortex rings in isodensity and isoviscosity fluid has been studied analytically using a novel mathematical model. The model predicts the spatiotemporal variation in peak vorticity, circulation, vortex size and spacing based on instantaneous vortex parameters. This proposed model is quantitatively verified using experimental measurements. Experiments are conducted using high-speed particle image velocimetry (PIV) and laser induced fluorescence (LIF) techniques. Non-buoyant vortex rings are generated from a nozzle using a constant hydrostatic pressure tank. The vortex Reynolds number based on circulation $(\\unicode[STIX]{x1D6E4}/\\unicode[STIX]{x1D708})$ is varied in the range 100–1500 to account for a large range of operating conditions. Experimental results show good agreement with theoretical predictions. However, it is observed that neither Saffman’s thin-core model nor the thick-core equations could correctly explain vortex evolution for all initial conditions. Therefore, a transitional theory is framed using force balance equations which seamlessly integrate short- and long-time asymptotic theories. It is found that the parameter $A=(a/\\unicode[STIX]{x1D70E})^{2}$ , where $a$ is the vortex half-spacing and $\\unicode[STIX]{x1D70E}$ denotes the standard deviation of the Gaussian vorticity profile, governs the regime of vortex evolution. For higher values of $A$ , evolution follows short-time behaviour, while for $A=O(1)$ , long-time behaviour is prominent. Using this theory, many reported anomalous observations have been explained.