Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
64
result(s) for
"Bathe, Mark"
Sort by:
Designer nanoscale DNA assemblies programmed from the top down
2016
Many intricate nanostructures have been made with DNA origami. This process occurs when a long DNA scaffold develops a particular shape after hybridization with short staple strands. Most designs, however, require a difficult iterative procedure of refining the base pairing. Veneziano et al. now report algorithms that automate the design of arbitrary DNA wireframe structures. Synthesizing and structurally characterizing a variety of nanostructures allowed for verification of the algorithms' accuracy. Science , this issue p. 1534 A top-down algorithm can program the design of arbitrary three-dimensional DNA structures. Scaffolded DNA origami is a versatile means of synthesizing complex molecular architectures. However, the approach is limited by the need to forward-design specific Watson-Crick base pairing manually for any given target structure. Here, we report a general, top-down strategy to design nearly arbitrary DNA architectures autonomously based only on target shape. Objects are represented as closed surfaces rendered as polyhedral networks of parallel DNA duplexes, which enables complete DNA scaffold routing with a spanning tree algorithm. The asymmetric polymerase chain reaction is applied to produce stable, monodisperse assemblies with custom scaffold length and sequence that are verified structurally in three dimensions to be high fidelity by single-particle cryo-electron microscopy. Their long-term stability in serum and low-salt buffer confirms their utility for biological as well as nonbiological applications.
Journal Article
Automated sequence design of 2D wireframe DNA origami with honeycomb edges
2019
Wireframe DNA origami has emerged as a powerful approach to fabricating nearly arbitrary 2D and 3D geometries at the nanometer-scale. Complex scaffold and staple routing needed to design wireframe DNA origami objects, however, render fully automated, geometry-based sequence design approaches essential for their synthesis. And wireframe DNA origami structural fidelity can be limited by wireframe edges that are composed only of one or two duplexes. Here we introduce a fully automated computational approach that programs 2D wireframe origami assemblies using honeycomb edges composed of six parallel duplexes. These wireframe assemblies show enhanced structural fidelity from electron microscopy-based measurement of programmed angles compared with identical geometries programmed using dual-duplex edges. Molecular dynamics provides additional theoretical support for the enhanced structural fidelity observed. Application of our top-down sequence design procedure to a variety of complex objects demonstrates its broad utility for programmable 2D nanoscale materials.
Wireframe DNA origami is a powerful approach to creating 2D and 3D geometries. Here the authors introduce an automated computational design approach that programs structures with high structural fidelity.
Journal Article
Role of nanoscale antigen organization on B-cell activation probed using DNA origami
by
Shepherd, Tyson R
,
Eike-Christian, Wamhoff
,
Schief, William R
in
Antigens
,
B-cell receptor
,
Cell activation
2020
Vaccine efficacy can be increased by arraying immunogens in multivalent form on virus-like nanoparticles to enhance B-cell activation. However, the effects of antigen copy number, spacing and affinity, as well as the dimensionality and rigidity of scaffold presentation on B-cell activation remain poorly understood. Here, we display the clinical vaccine immunogen eOD-GT8, an engineered outer domain of the HIV-1 glycoprotein-120, on DNA origami nanoparticles to systematically interrogate the impact of these nanoscale parameters on B-cell activation in vitro. We find that B-cell signalling is maximized by as few as five antigens maximally spaced on the surface of a 40-nm viral-like nanoparticle. Increasing antigen spacing up to ~25–30 nm monotonically increases B-cell receptor activation. Moreover, scaffold rigidity is essential for robust B-cell triggering. These results reveal molecular vaccine design principles that may be used to drive functional B-cell responses.DNA origami allows the precise spatial patterning of antigens to investigate the impact of antigen spacing and arrangement on B-cell activation in vitro, which is important for the design of efficient vaccination strategies.
Journal Article
Random access DNA memory using Boolean search in an archival file storage system
by
Blainey, Paul C.
,
Huang, Hellen
,
Shepherd, Tyson R.
in
631/61/54/991
,
631/61/54/992
,
Archives
2021
DNA is an ultrahigh-density storage medium that could meet exponentially growing worldwide demand for archival data storage if DNA synthesis costs declined sufficiently and if random access of files within exabyte-to-yottabyte-scale DNA data pools were feasible. Here, we demonstrate a path to overcome the second barrier by encapsulating data-encoding DNA file sequences within impervious silica capsules that are surface labelled with single-stranded DNA barcodes. Barcodes are chosen to represent file metadata, enabling selection of sets of files with Boolean logic directly, without use of amplification. We demonstrate random access of image files from a prototypical 2-kilobyte image database using fluorescence sorting with selection sensitivity of one in 10
6
files, which thereby enables one in 10
6
N
selection capability using
N
optical channels. Our strategy thereby offers a scalable concept for random access of archival files in large-scale molecular datasets.
Silica beads encapsulating DNA information and functionalized with DNA labels create an alternative DNA data storage system, where direct random access and data retrieval are enabled by complementary fluorescent strands that identify beads for separation in fluorescence-activated sorting.
Journal Article
Secondary structural ensembles of the SARS-CoV-2 RNA genome in infected cells
2022
SARS-CoV-2 is a betacoronavirus with a single-stranded, positive-sense, 30-kilobase RNA genome responsible for the ongoing COVID-19 pandemic. Although population average structure models of the genome were recently reported, there is little experimental data on native structural ensembles, and most structures lack functional characterization. Here we report secondary structure heterogeneity of the entire SARS-CoV-2 genome in two lines of infected cells at single nucleotide resolution. Our results reveal alternative RNA conformations across the genome and at the critical frameshifting stimulation element (FSE) that are drastically different from prevailing population average models. Importantly, we find that this structural ensemble promotes frameshifting rates much higher than the canonical minimal FSE and similar to ribosome profiling studies. Our results highlight the value of studying RNA in its full length and cellular context. The genomic structures detailed here lay groundwork for coronavirus RNA biology and will guide the design of SARS-CoV-2 RNA-based therapeutics.
Lan et al. report RNA structure ensembles across the entire SARSCoV-2 genome in infected human cells at single nucleotide resolution. They find alternative RNA conformations critical for promoting near-native frameshifting rates in ORF1ab.
Journal Article
3D RNA-scaffolded wireframe origami
2023
Hybrid RNA:DNA origami, in which a long RNA scaffold strand folds into a target nanostructure via thermal annealing with complementary DNA oligos, has only been explored to a limited extent despite its unique potential for biomedical delivery of mRNA, tertiary structure characterization of long RNAs, and fabrication of artificial ribozymes. Here, we investigate design principles of three-dimensional wireframe RNA-scaffolded origami rendered as polyhedra composed of dual-duplex edges. We computationally design, fabricate, and characterize tetrahedra folded from an EGFP-encoding messenger RNA and de Bruijn sequences, an octahedron folded with M13 transcript RNA, and an octahedron and pentagonal bipyramids folded with 23S ribosomal RNA, demonstrating the ability to make diverse polyhedral shapes with distinct structural and functional RNA scaffolds. We characterize secondary and tertiary structures using dimethyl sulfate mutational profiling and cryo-electron microscopy, revealing insight into both global and local, base-level structures of origami. Our top-down sequence design strategy enables the use of long RNAs as functional scaffolds for complex wireframe origami.
Hybrid nucleic acid origami has potential for biomedical delivery of mRNA and fabrication of artificial ribozymes. Here, the authors use chemical footprinting and cryo-electron microscopy to reveal insights into nucleic acid origami used to fold messenger and ribosomal RNA into 3D polyhedral structures.
Journal Article
Inferring transient particle transport dynamics in live cells
2015
Single-particle dynamics are analyzed with hidden Markov modeling in combination with Bayesian model selection. This method can annotate both diffusive and directed motion states with single-step resolution.
Live-cell imaging and particle tracking provide rich information on mechanisms of intracellular transport. However, trajectory analysis procedures to infer complex transport dynamics involving stochastic switching between active transport and diffusive motion are lacking. We applied Bayesian model selection to hidden Markov modeling to infer transient transport states from trajectories of mRNA-protein complexes in live mouse hippocampal neurons and metaphase kinetochores in dividing human cells. The software is available at
http://hmm-bayes.org/
.
Journal Article
In vitro synthesis of gene-length single-stranded DNA
2018
Single-stranded DNA (ssDNA) increases the likelihood of homology directed repair with reduced cellular toxicity. However, ssDNA synthesis strategies are limited by the maximum length attainable, ranging from a few hundred nucleotides for chemical synthesis to a few thousand nucleotides for enzymatic synthesis, as well as limited control over nucleotide composition. Here, we apply purely enzymatic synthesis to generate ssDNA greater than 15 kilobases (kb) using asymmetric PCR, and illustrate the incorporation of diverse modified nucleotides for therapeutic and theranostic applications.
Journal Article
Nanoscale 3D spatial addressing and valence control of quantum dots using wireframe DNA origami
2022
Control over the copy number and nanoscale positioning of quantum dots (QDs) is critical to their application to functional nanomaterials design. However, the multiple non-specific binding sites intrinsic to the surface of QDs have prevented their fabrication into multi-QD assemblies with programmed spatial positions. To overcome this challenge, we developed a general synthetic framework to selectively attach spatially addressable QDs on 3D wireframe DNA origami scaffolds using interfacial control of the QD surface. Using optical spectroscopy and molecular dynamics simulation, we investigated the fabrication of monovalent QDs of different sizes using chimeric single-stranded DNA to control QD surface chemistry. By understanding the relationship between chimeric single-stranded DNA length and QD size, we integrated single QDs into wireframe DNA origami objects and visualized the resulting QD-DNA assemblies using electron microscopy. Using these advances, we demonstrated the ability to program arbitrary 3D spatial relationships between QDs and dyes on DNA origami objects by fabricating energy-transfer circuits and colloidal molecules. Our design and fabrication approach enables the geometric control and spatial addressing of QDs together with the integration of other materials including dyes to fabricate hybrid materials for functional nanoscale photonic devices.
Programming the 3D spatial organization of quantum dots requires precise control over their individual valence, but this is challenging due to the possible presence of multiple binding sites. Here, authors develop a general approach that uses highly programmable wireframe DNA origami structures to control the 3D spatial relationships between QDs and other non-nucleic-acid molecules.
Journal Article
Enhancing antibody responses by multivalent antigen display on thymus-independent DNA origami scaffolds
2024
Protein-based virus-like particles (P-VLPs) are commonly used to spatially organize antigens and enhance humoral immunity through multivalent antigen display. However, P-VLPs are thymus-dependent antigens that are themselves immunogenic and can induce B cell responses that may neutralize the platform. Here, we investigate thymus-independent DNA origami as an alternative material for multivalent antigen display using the receptor binding domain (RBD) of the SARS-CoV-2 spike protein, the primary target of neutralizing antibody responses. Sequential immunization of mice with DNA-based VLPs (DNA-VLPs) elicits protective neutralizing antibodies to SARS-CoV-2 in a manner that depends on the valency of the antigen displayed and on T cell help. Importantly, the immune sera do not contain boosted, class-switched antibodies against the DNA scaffold, in contrast to P-VLPs that elicit strong B cell memory against both the target antigen and the scaffold. Thus, DNA-VLPs enhance target antigen immunogenicity without generating scaffold-directed immunity and thereby offer an important alternative material for particulate vaccine design.
Three-dimensional DNA origami constructs can be used to deliver vaccine antigens in a multi-valent form. Here the authors design a DNA origami system for SARS-CoV-2 proteins and characterize in mice the immune response and protective capacity of generated antibodies, finding that the construct itself is not immunogenic.
Journal Article