Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
25 result(s) for "Batruch, Ihor"
Sort by:
Topographic mapping of the glioblastoma proteome reveals a triple-axis model of intra-tumoral heterogeneity
Glioblastoma is an aggressive form of brain cancer with well-established patterns of intra-tumoral heterogeneity implicated in treatment resistance and progression. While regional and single cell transcriptomic variations of glioblastoma have been recently resolved, downstream phenotype-level proteomic programs have yet to be assigned across glioblastoma’s hallmark histomorphologic niches. Here, we leverage mass spectrometry to spatially align abundance levels of 4,794 proteins to distinct histologic patterns across 20 patients and propose diverse molecular programs operational within these regional tumor compartments. Using machine learning, we overlay concordant transcriptional information, and define two distinct proteogenomic programs, MYC- and KRAS-axis hereon, that cooperate with hypoxia to produce a tri-dimensional model of intra-tumoral heterogeneity. Moreover, we highlight differential drug sensitivities and relative chemoresistance in glioblastoma cell lines with enhanced KRAS programs. Importantly, these pharmacological differences are less pronounced in transcriptional glioblastoma subgroups suggesting that this model may provide insights for targeting heterogeneity and overcoming therapy resistance. Gioblastoma tumours consist of different niches defined by histology. Here, the authors use proteomics and machine learning to assign protein expression programs to these niches, and reveal that KRAS and hypoxia are associated with drug resistance.
High-throughput proteomics of nanogram-scale samples with Zeno SWATH MS
The possibility to record proteomes in high throughput and at high quality has opened new avenues for biomedical research, drug discovery, systems biology, and clinical translation. However, high-throughput proteomic experiments often require high sample amounts and can be less sensitive compared to conventional proteomic experiments. Here, we introduce and benchmark Zeno SWATH MS, a data-independent acquisition technique that employs a linear ion trap pulsing (Zeno trap pulsing) to increase the sensitivity in high-throughput proteomic experiments. We demonstrate that when combined with fast micro- or analytical flow-rate chromatography, Zeno SWATH MS increases protein identification with low sample amounts. For instance, using 20 min micro-flow-rate chromatography, Zeno SWATH MS identified more than 5000 proteins consistently, and with a coefficient of variation of 6%, from a 62.5 ng load of human cell line tryptic digest. Using 5 min analytical flow-rate chromatography (800 µl/min), Zeno SWATH MS identified 4907 proteins from a triplicate injection of 2 µg of a human cell lysate, or more than 3000 proteins from a 250 ng tryptic digest. Zeno SWATH MS hence facilitates sensitive high-throughput proteomic experiments with low sample amounts, mitigating the current bottlenecks of high-throughput proteomics.
B cell profiles, antibody repertoire and reactivity reveal dysregulated responses with autoimmune features in melanoma
B cells are known to contribute to the anti-tumor immune response, especially in immunogenic tumors such as melanoma, yet humoral immunity has not been characterized in these cancers to detail. Here we show comprehensive phenotyping in samples of circulating and tumor-resident B cells as well as serum antibodies in melanoma patients. Memory B cells are enriched in tumors compared to blood in paired samples and feature distinct antibody repertoires, linked to specific isotypes. Tumor-associated B cells undergo clonal expansion, class switch recombination, somatic hypermutation and receptor revision. Compared with blood, tumor-associated B cells produce antibodies with proportionally higher levels of unproductive sequences and distinct complementarity determining region 3 properties. The observed features are signs of affinity maturation and polyreactivity and suggest an active and aberrant autoimmune-like reaction in the tumor microenvironment. Consistent with this, tumor-derived antibodies are polyreactive and characterized by autoantigen recognition. Serum antibodies show reactivity to antigens attributed to autoimmune diseases and cancer, and their levels are higher in patients with active disease compared to post-resection state. Our findings thus reveal B cell lineage dysregulation with distinct antibody repertoire and specificity, alongside clonally-expanded tumor-infiltrating B cells with autoimmune-like features, shaping the humoral immune response in melanoma. B cells are playing an active role in shaping the tumour immune microenvironment and the anti-tumour immune response in melanomas. Here authors show that intra-tumoral B cells are aberrantly activated and produce antibodies that are potentially autoreactive.
Urinary proteomics links keratan sulfate degradation and lysosomal enzymes to early type 1 diabetes
Diabetes is the leading cause of end-stage renal disease worldwide. Our understanding of the early kidney response to chronic hyperglycemia remains incomplete. To address this, we first investigated the urinary proteomes of otherwise healthy youths with and without type 1 diabetes and subsequently examined the enriched pathways that might be dysregulated in early disease using systems biology approaches. This cross-sectional study included two separate cohorts for the discovery (N = 30) and internal validation (N = 30) of differentially excreted proteins. Discovery proteomics was performed on a Q Exactive Plus hybrid quadrupole-orbitrap mass spectrometer. We then searched the pathDIP, KEGG, and Reactome databases to identify enriched pathways in early diabetes; the Integrated Interactions Database to retrieve protein-protein interaction data; and the PubMed database to compare fold changes of our signature proteins with those published in similarly designed studies. Proteins were selected for internal validation based on pathway enrichment and availability of commercial enzyme-linked immunosorbent assay kits. Of the 2451 proteins identified, 576 were quantified in all samples from the discovery cohort; 34 comprised the urinary signature for early diabetes after Benjamini-Hochberg adjustment (Q < 0.05). The top pathways associated with this signature included lysosome, glycosaminoglycan degradation, and innate immune system (Q < 0.01). Notably, all enzymes involved in keratan sulfate degradation were significantly elevated in urines from youths with diabetes (|fold change| > 1.6). Increased urinary excretion of monocyte differentiation antigen CD14, hexosaminidase A, and lumican was also observed in the validation cohort (P < 0.05). Twenty-one proteins from our signature have been reported elsewhere as potential mediators of early diabetes. In this study, we identified a urinary proteomic signature for early type 1 diabetes, of which lysosomal enzymes were major constituents. Our findings highlight novel pathways such as keratan sulfate degradation in the early kidney response to hyperglycemia.
Identification of brain-enriched proteins in the cerebrospinal fluid proteome by LC-MS/MS profiling and mining of the Human Protein Atlas
Background Cerebrospinal fluid (CSF) is a proximal fluid which communicates closely with brain tissue, contains numerous brain-derived proteins and thus represents a promising fluid for discovery of biomarkers of central nervous system (CNS) diseases. The main purpose of this study was to generate an extensive CSF proteome and define brain-related proteins identified in CSF, suitable for development of diagnostic assays. Methods Six non-pathological CSF samples from three female and three male individuals were selected for CSF analysis. Samples were first subjected to strong cation exchange chromatography, followed by LC-MS/MS analysis. Secreted and membrane-bound proteins enriched in the brain tissues were retrieved from the Human Protein Atlas. Results In total, 2615 proteins were identified in the CSF. The number of proteins identified per individual sample ranged from 1109 to 1421, with inter-individual variability between six samples of 21 %. Based on the Human Protein Atlas, 78 brain-specific proteins found in CSF samples were proposed as a signature of brain-enriched proteins in CSF. Conclusion A combination of Human Protein Atlas database and experimental search of proteins in specific body fluid can be applied as an initial step in search for disease biomarkers specific for a particular tissue. This signature may be of significant interest for development of novel diagnostics of CNS diseases and identification of drug targets.
Neuronal pentraxin receptor-1 is a new cerebrospinal fluid biomarker of Alzheimer’s disease progression
Background: Alzheimer’s disease (AD) is the most common type of dementia, with progressive onset of clinical symptoms. The main pathological hallmarks are brain deposits of extracellular amyloid beta plaques and intracellular neurofibrillary tangles (NFT). Cerebrospinal fluid reflects pathological changes in the brain; amyloid beta 1-42 is a marker of amyloid plaques, while total and phosphorylated tau are markers of NFT formation. Additional biomarkers associated with disease pathogenesis are needed, for better prognosis, more specific diagnosis, prediction of disease severity and progression and for improved patient classification in clinical trials. The aim of the present study was to evaluate brain-specific proteins as potential biomarkers of progression of AD. Methods: Overall, 30 candidate proteins were quantified in cerebrospinal fluid (CSF) samples from patients with mild cognitive impairment (MCI) and mild, moderate and severe AD dementia (n=101) using mass spectrometry-based selected reaction monitoring assays. ELISA was used for neuronal pentraxin receptor-1 (NPTXR) confirmation. Results: The best discrimination between MCI and more advanced AD stages (moderate and severe dementia) was observed for protein NPTXR (area under the curve, AUC=0.799). A statistically different abundance of this protein was observed between the two groups, with severe AD patients having progressively lower levels (p<0.05). ELISA confirmed lower levels in AD, in a separate cohort that included controls, MCI and AD patients. Conclusions: We conclude that NPTXR protein in CSF is a novel potential biomarker of AD progression and could have important utility in assessing treatment success in clinical trials.
Putative autoantibodies in the cerebrospinal fluid of Alzheimer's disease patients version 1; peer review: 1 approved, 3 approved with reservations
Background: Recent efforts have described an immunogenic component to the pathobiology of Alzheimer's disease (AD) and Parkinson's disease (PD). However, current methods of studying fluid autoantibodies, such as enzyme-linked immunosorbent assays and immunohistochemistry, are hypothesis-driven and not optimal for discovering new autoantibody biomarkers by proteome-wide screening. Recently, we developed a general mass spectrometry-based approach to identify tissue-specific autoantibodies in serum, at a proteome-wide level. In this study, we adapted the method to explore novel autoantibody biomarkers in the cerebrospinal fluid (CSF) of AD and PD patients. Methods: CSF samples were obtained from 10 headache control individuals, 10 AD patients and 10 PD patients. Antibodies present in the CSF were isolated by immobilization to protein-G magnetic beads. These antibodies were incubated with a brain tissue extract, prepared from frontal cortex, pons, cerebellum and brain stem. Protein antigens captured by the protein-G magnetic bead-bound antibodies were digested with trypsin and analyzed using mass spectrometry. Autoantibody candidates were selected by 1) detection in one or less individuals of the control group and 2) identification in at least half of the patient groups. Results: There were 16 putative autoantibody biomarkers selected from the AD group. Glia-derived nexin autoantibody was detected in eight of ten AD patients and was absent in the control group. Other AD pathology-related targets were also identified, such as actin-interaction protein, quinone oxidoreductase, sushi repeat-containing protein, metalloproteinase inhibitor 2, IP3 receptor 1 and sarcoplasmic/endoplasmic reticulum calcium ATPase 2. An additional eleven autoantibody targets were also identified in the present experiment, although their link to AD is not clear. No autoantibodies in the PD group satisfied our selection criteria. Conclusion: Our unbiased mass spectrometry method was able to detect new putative CSF autoantibody biomarkers of AD. Further investigation into the involvement of humoral autoimmunity in AD and PD pathobiology may be warranted.
Predicting response and toxicity to PD-1 inhibition using serum autoantibodies identified from immuno-mass spectrometry version 1; peer review: 2 approved
Background: Validated biomarkers are needed to identify patients at increased risk of immune-related adverse events (irAEs) to immune checkpoint blockade (ICB). Antibodies directed against endogenous antigens can change after exposure to ICB. Methods: Patients with different solid tumors stratified into cohorts received pembrolizumab every 3 weeks in a Phase II trial (INSPIRE study). Blood samples were collected prior to first pembrolizumab exposure (baseline) and approximately 7 weeks (pre-cycle 3) into treatment. In a discovery analysis, autoantibody target immuno-mass spectrometry was performed in baseline and pre-cycle 3 pooled sera of 24 INSPIRE patients based on clinical benefit (CBR) and irAEs. Results: Thyroglobulin (Tg) and thyroid peroxidase (TPO) were identified as the candidate autoantibody targets. In the overall cohort of 78 patients, the frequency of CBR and irAEs from pembrolizumab was 31% and 24%, respectively. Patients with an anti-Tg titer increase ≥1.5x from baseline to pre-cycle 3 were more likely to have irAEs relative to patients without this increase in unadjusted, cohort adjusted, and multivariable models (OR=17.4, 95% CI 1.8-173.8, p=0.015). Similarly, patients with an anti-TPO titer ≥ 1.5x from baseline to pre-cycle 3 were more likely to have irAEs relative to patients without the increase in unadjusted and cohort adjusted (OR=6.1, 95% CI 1.1-32.7, p=0.035) models. Further, the cohort adjusted analysis showed patients with anti-Tg titer greater than median (10.0 IU/mL) at pre-cycle 3 were more likely to have irAEs (OR=4.7, 95% CI 1.2-17.8, p=0.024). Patients with pre-cycle 3 anti-TPO titers greater than median (10.0 IU/mL) had a significant difference in overall survival (23.8 vs 11.5 months; HR=1.8, 95% CI 1.0-3.2, p=0.05). Conclusions: Patient increase ≥1.5x of anti-Tg and anti-TPO titers from baseline to pre-cycle 3 were associated with irAEs from pembrolizumab, and patients with elevated pre-cycle 3 anti-TPO titers had an improvement in overall survival.
Immunotherapy using IgE or CAR T cells for cancers expressing the tumor antigen SLC3A2
BackgroundCancer immunotherapy with monoclonal antibodies and chimeric antigen receptor (CAR) T cell therapies can benefit from selection of new targets with high levels of tumor specificity and from early assessments of efficacy and safety to derisk potential therapies.MethodsEmploying mass spectrometry, bioinformatics, immuno-mass spectrometry and CRISPR/Cas9 we identified the target of the tumor-specific SF-25 antibody. We engineered IgE and CAR T cell immunotherapies derived from the SF-25 clone and evaluated potential for cancer therapy.ResultsWe identified the target of the SF-25 clone as the tumor-associated antigen SLC3A2, a cell surface protein with key roles in cancer metabolism. We generated IgE monoclonal antibody, and CAR T cell immunotherapies each recognizing SLC3A2. In concordance with preclinical and, more recently, clinical findings with the first-in-class IgE antibody MOv18 (recognizing the tumor-associated antigen Folate Receptor alpha), SF-25 IgE potentiated Fc-mediated effector functions against cancer cells in vitro and restricted human tumor xenograft growth in mice engrafted with human effector cells. The antibody did not trigger basophil activation in cancer patient blood ex vivo, suggesting failure to induce type I hypersensitivity, and supporting safe therapeutic administration. SLC3A2-specific CAR T cells demonstrated cytotoxicity against tumor cells, stimulated interferon-γ and interleukin-2 production in vitro. In vivo SLC3A2-specific CAR T cells significantly increased overall survival and reduced growth of subcutaneous PC3-LN3-luciferase xenografts. No weight loss, manifestations of cytokine release syndrome or graft-versus-host disease, were detected.ConclusionsThese findings identify efficacious and potentially safe tumor-targeting of SLC3A2 with novel immune-activating antibody and genetically modified cell therapies.
Collective migration of cancer-associated fibroblasts is enhanced by overexpression of tight junction-associated proteins claudin-11 and occludin
It has been suggested that cancer-associated fibroblasts (CAFs) positioned at the desmoplastic areas of various types of cancer are capable of executing a migratory program, characterized by accelerated motility and collective configuration. Since CAFs are reprogrammed derivatives of normal progenitors, including quiescent fibroblasts, we hypothesized that such migratory program could be context-dependent, thus being regulated by specific paracrine signals from the adjacent cancer population. Using the traditional scratch assay setup, we showed that only specific colon cancer cell lines (i.e. HT29) were able to induce collective CAF migration. By performing quantitative proteomics (SILAC), we identified a 2.7-fold increase of claudin-11, a member of the tight junction apparatus, in CAFs that exerted such collectivity in their migratory pattern. Further proteomic investigations of cancer cell line secretomes revealed a specific signature, involving TGF-β, as potential mediator of this effect. Normal colonic fibroblasts stimulated with TGF-β exerted myofibroblastic differentiation, occludin (OCLN) and claudin-11 (CLDN11) overexpression and cohort formation. Subsequently, inhibition of TGF-β attenuated all the previous effects. Immunohistochemistry of the universal tight junction marker occludin in a cohort of 30 colorectal adenocarcinoma patients defined a CAF subpopulation expressing tight junctions. Overall, these data suggest that cancer cells may induce CLDN11 overexpression and subsequent collective migration of peritumoral CAFs via TGF-β secretion. •We showed that cancer cell conditioned media (HT29) causes collective fibroblast migration.•We demonstrated that this migratory pattern is associated with the myofibroblastic phenotype.•We demonstrated that this migratory pattern is occludin- and claudin-11-mediated.•We demonstrated that occludin and claudin-11 are regulated by TGF-beta.•We showed clinical/immunohistochemical relevance of our data using a cohort of CRC patients.