Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
66 result(s) for "Bauer, Jens J."
Sort by:
Transition for adolescents with a rare disease: results of a nationwide German project
Purpose The transition process from paediatric/adolescent to adult medical care settings is of utmost importance for the future health of adolescents with chronic diseases and poses even more difficulties in the context of rare diseases (RDs). Paediatric care teams are challenged to deliver adolescent-appropriate information and structures. Here we present a structured transition pathway which is patient-focused and adoptable for different RDs. Methods The transition pathway for adolescents 16 years and older was developed and implemented as part of a multi-centre study in 10 university hospitals in Germany. Key elements of the pathway included: assessment of patients’ disease-related knowledge and needs, training/educational and counselling sessions, a structured epicrisis and a transfer appointment jointly with the paediatric and adult specialist. Specific care coordinators from the participating university hospitals were in charge of organization and coordination of the transition process. Results Of a total of 292 patients, 286 completed the pathway. Deficits in disease-specific knowledge were present in more than 90% of participants. A need for genetic or socio-legal counselling was indicated by > 60%. A mean of 2.1 training sessions per patient were provided over a period of almost 1 year, followed by the transfer to adult care in 267 cases. Twelve patients remained in paediatric care as no adult health care specialist could be identified. Targeted training and counselling resulted in improved disease-specific knowledge and contributed to empowering of patients. Conclusion The described transition pathway succeeds to improve health literacy in adolescents with RDs and can be implemented by paediatric care teams in any RD specialty. Patient empowerment was mainly achieved by individualized training and counselling.
A Piece of the Puzzle: The Bone Health Index of the BoneXpert Software Reflects Cortical Bone Mineral Density in Pediatric and Adolescent Patients
Suspected osteopathology in chronically ill children often necessitates the assessment of bone mineral density. The most frequently used methods are dual-energy X-ray-absorption (DXA) and peripheral quantitative computed tomography (pQCT). The BoneXpert software provides an automated radiogrammatic method to assess skeletal age from digitalized X-rays of the left hand. Furthermore, the program calculates the Bone Health Index (BHI), a measure of cortical thickness and mineralization, which is obtained from indices of three metacarpal bones. In our study, we analyzed the manner in which BHI information provided by BoneXpert compares with DXA or pQCT measurements in youths. The BHI was retrospectively obtained using digitalized X-rays of the left hand and compared with the results of 203 corresponding DXA readings (Lunar Prodigy, GE Healthcare) of the lumbar vertebrae and femur as well as 117 pQCT readings (XCT 900, Stratec) of the distal radius. The BHI values showed a strong positive correlation with the DXA readings at each and all lumbar vertebrae (L1 -L4: r = 0.73; P < 0.0001). The age-adjusted Z-score of L1 -L4 and the height-adjusted score showed a positive correlation with the BHI-SDS (standard deviation score, r = 0.23; P < 0.002 and r = 0.27; P < 0.001, respectively). Total bone mineral density, as assessed via pQCT, also positively correlated with the BHI (r = 0.39; P < 0.0001), but the trabecular values displayed only a weak correlation. The BHI obtained using BoneXpert can be a useful parameter in the assessment of bone health in children in most cases. This technique provides observer-independent information on cortical thickness and mineralization based on X-ray imaging of the hands.
Influenza A Viruses Target Type II Pneumocytes in the Human Lung
Background. Highly pathogenic avian H5N1 influenza viruses preferentially infect alveolar type II pneumocytes in human lung. However, it is unknown whether this cellular tropism contributes to high viral virulence because the primary target cells of other influenza viruses have not been systematically studied. Methods. We provide the first comparison of the replication, tropism, and cytokine induction of human, highly pathogenic avian influenza A virus subtype H5N1 and other animal influenza A viruses in primary human lung organ cultures. Results. Subytpe H5N1 and human-adapted subtype H1N1 and H3N2 viruses replicated efficiently in the lung tissue, whereas classic swine and low-pathogenicity avian viruses propagated only poorly. Nevertheless, all viruses examined were detected almost exclusively in type II pneumocytes, with a minor involvement of alveolar macrophages. Infection with avian viruses that have a low and high pathogenicity provoked a pronounced induction of cytokines and chemokines, while human and pandemic H1N1-2009 viruses triggered only weak responses. Conclusions. These findings show that differences in the pathogenic potential of influenza A viruses in the human lung cannot be attributed to a distinct cellular tropism. Rather, high or low viral pathogenicity is associated with a strain-specific capacity to productively replicate in type II pneumocytes and to cope with the induced cytokine response.
Surface electromyographic activity of trunk muscles during trunk control exercises for people after stroke; effect of a mobile and stable seat for rehabilitation
The aim of this study was to explore differences in trunk muscle activity on a stable and mobile seat for people after stroke and healthy participants. Trunk control exercises are known to have a beneficial effect on trunk control, balance, and mobility after stroke. The effect of such exercises could be enhanced by the use of a mobile seat to provide further training stimuli. However, little research on the musculoskeletal effects of trunk training on mobile seats has been carried out. On a stable and a mobile seat, thirteen people after stroke and fifteen healthy participants performed two selective trunk control exercises, which were lateral flexion initiated by the pelvis and the thorax. The maximal surface electromyography relative to static sitting of the muscles multifidus, erector spinae, and obliquus externus was recorded bilaterally. The effects of group, seat condition, trunk control exercise, and muscle side were investigated employing within-subject linear-mixed-models. Compared to the stable seat, the maximal muscle activity of people after stroke on the mobile seat was higher during the thorax-initiated exercise and lower during the pelvis-initiated exercise. Healthy participants showed opposite results with higher muscle activity on the mobile seat during the pelvis-initiated exercise. For trunk control training on a mobile seat with high muscle activation people after stroke should perform trunk control exercises initiated by the thorax, for training with lower muscle activity people after stroke should initiate selective trunk movements by the pelvis. The results can support the planning of progressive trunk control rehabilitation programs.
Immunization expands B cells specific to HIV-1 V3 glycan in mice and macaques
Broadly neutralizing monoclonal antibodies protect against infection with HIV-1 in animal models, suggesting that a vaccine that elicits these antibodies would be protective in humans. However, it has not yet been possible to induce adequate serological responses by vaccination. Here, to activate B cells that express precursors of broadly neutralizing antibodies within polyclonal repertoires, we developed an immunogen, RC1, that facilitates the recognition of the variable loop 3 (V3)-glycan patch on the envelope protein of HIV-1. RC1 conceals non-conserved immunodominant regions by the addition of glycans and/or multimerization on virus-like particles. Immunization of mice, rabbits and rhesus macaques with RC1 elicited serological responses that targeted the V3-glycan patch. Antibody cloning and cryo-electron microscopy structures of antibody–envelope complexes confirmed that immunization with RC1 expands clones of B cells that carry the anti-V3-glycan patch antibodies, which resemble precursors of human broadly neutralizing antibodies. Thus, RC1 may be a suitable priming immunogen for sequential vaccination strategies in the context of polyclonal repertoires. The immunogen RC1 facilitates recognition of the V3-glycan patch on the envelope of HIV-1 and elicits specific serological responses in mice and macaques, making it a possible priming immunogen for sequential vaccination strategies in humans.
Pneumolysin induced mitochondrial dysfunction leads to release of mitochondrial DNA
Streptococcus pneumoniae ( S . pn. ) is the most common bacterial pathogen causing community acquired pneumonia. The pore-forming toxin pneumolysin (PLY) is the major virulence factor of S . pn . and supposed to affect alveolar epithelial cells thereby activating the immune system by liberation of danger-associated molecular patterns (DAMP). To test this hypothesis, we established a novel live-cell imaging based assay to analyse mitochondrial function and associated release of mitochondrial DNA (mtDNA) as DAMP in real-time. We first revealed that bacterially released PLY caused significant changes of the cellular ATP homeostasis and led to morphologic alterations of mitochondria in human alveolar epithelial cells in vitro and, by use of spectral live-tissue imaging, in human alveoli. This was accompanied by strong mitochondrial calcium influx and loss of mitochondrial membrane potential resulting in opening of the mitochondrial permeability transition pore and mtDNA release without activation of intrinsic apoptosis. Moreover, our data indicate cellular mtDNA liberation via microvesicles, which may contribute to S . pn . related pro-inflammatory immune activation in the human alveolar compartment.
Assessment of an Advanced Monoenergetic Reconstruction Technique in Dual-Energy Computed Tomography of Head and Neck Cancer
Objectives To define optimal keV settings for advanced monoenergetic (Mono+) dual-energy computed tomography (DECT) in patients with head and neck squamous cell carcinoma (SCC). Methods DECT data of 44 patients (34 men, mean age 55.5 ± 16.0 years) with histopathologically confirmed SCC were reconstructed as 40, 55, 70 keV Mono + and M_0.3 (30 % 80 kV) linearly blended series. Attenuation of tumour, sternocleidomastoid muscle, internal jugular vein, submandibular gland, and noise were measured. Three radiologists with >3 years of experience subjectively assessed image quality, lesion delineation, image sharpness, and noise. Results The highest lesion attenuation was shown for 40 keV series (248.1 ± 94.1 HU), followed by 55 keV (150.2 ± 55.5 HU; P  = 0.001). Contrast-to-noise ratio (CNR) at 40 keV (19.09 ± 13.84) was significantly superior to all other reconstructions (55 keV, 10.25 ± 9.11; 70 keV, 7.68 ± 6.31; M_0.3, 5.49 ± 3.28; all P  < 0.005). Subjective image quality was highest for 55 keV images (4.53; κ = 0.38, P  = 0.003), followed by 40 keV (4.14; κ = 0.43, P  < 0.001) and 70 keV reconstructions (4.06; κ = 0.32, P  = 0.005), all superior ( P  < 0.004) to linear blending M_0.3 (3.81; κ = 0.280, P  = 0.056). Conclusions Mono + DECT at low keV levels significantly improves CNR and subjective image quality in patients with head and neck SCC, as tumour CNR peaks at 40 keV, and 55 keV images are preferred by observers. Key Points • Mono + DECT combines increased contrast with reduced image noise, unlike linearly blended images. • Mono + DECT imaging allows for superior CNR and subjective image quality. • Head and neck tumour contrast-to-noise ratio peaks at 40 keV. • 55 keV images are preferred over all other series by observers.
An overview of the ORACLES (ObseRvations of Aerosols above CLouds and their intEractionS) project: aerosol–cloud–radiation interactions in the southeast Atlantic basin
Southern Africa produces almost a third of the Earth’s biomass burning (BB) aerosol particles, yet the fate of these particles and their influence on regional and global climate is poorly understood. ORACLES (ObseRvations of Aerosols above CLouds and their intEractionS) is a 5-year NASA EVS-2 (Earth Venture Suborbital-2) investigation with three intensive observation periods designed to study key atmospheric processes that determine the climate impacts of these aerosols. During the Southern Hemisphere winter and spring (June–October), aerosol particles reaching 3–5 km in altitude are transported westward over the southeast Atlantic, where they interact with one of the largest subtropical stratocumulus (Sc) cloud decks in the world. The representation of these interactions in climate models remains highly uncertain in part due to a scarcity of observational constraints on aerosol and cloud properties, as well as due to the parameterized treatment of physical processes. Three ORACLES deployments by the NASA P-3 aircraft in September 2016, August 2017, and October 2018 (totaling ~ 350 science flight hours), augmented by the deployment of the NASA ER-2 aircraft for remote sensing in September 2016 (totaling ~ 100 science flight hours), were intended to help fill this observational gap. ORACLES focuses on three fundamental science themes centered on the climate effects of African BB aerosols: (a) direct aerosol radiative effects, (b) effects of aerosol absorption on atmospheric circulation and clouds, and (c) aerosol–cloud microphysical interactions. This paper summarizes the ORACLES science objectives, describes the project implementation, provides an overview of the flights and measurements in each deployment, and highlights the integrative modeling efforts from cloud to global scales to address science objectives. Significant new findings on the vertical structure of BB aerosol physical and chemical properties, chemical aging, cloud condensation nuclei, rain and precipitation statistics, and aerosol indirect effects are emphasized, but their detailed descriptions are the subject of separate publications. The main purpose of this paper is to familiarize the broader scientific community with the ORACLES project and the dataset it produced.
The Mission Support System (MSS v7.0.4) and its use in planning for the SouthTRAC aircraft campaign
The Mission Support System (MSS) is an open source software package that has been used for planning flight tracks of scientific aircraft in multiple measurement campaigns during the last decade. It consists of three major components: a web map server located close to the model data storage site that is capable of producing a variety of 2-D figures from 4-D meteorological data; a client application capable of displaying the figures in combination with the planned flight track and an assortment of additional information; and a new collaboration server component that enables real-time collaboration of multiple remote parties. During the last decade, these components were constantly improved towards being simple to set up and use and being standard compliant.Here, we describe the use of MSS during the Southern Hemisphere Transport, Dynamics, and Chemistry–Gravity Waves (SouthTRAC-GW) measurement campaign in 2019. This campaign, based in Rio Grande, Argentina, used the German research aircraft HALO to investigate several scientific objectives related to the Southern Hemisphere chemistry and dynamics. We present the diverse data products offered by the MSS web map server dedicated to the campaign, which were derived from the European Centre for Medium-Range Weather Forecasts (ECMWF) forecast data, Chemical Lagrangian Model of the Stratosphere (CLaMS) simulations, and Atmospheric Infrared Sounder (AIRS) near-real time brightness temperature measurements. As an example for how the MSS software is used in conjunction with the different data sets, we describe the planning of a single flight, which eventually took place on 12 September 2019, probing orographic gravity waves propagating up into the lower mesosphere.
The oncogenic fusion protein DNAJB1-PRKACA can be specifically targeted by peptide-based immunotherapy in fibrolamellar hepatocellular carcinoma
The DNAJB1-PRKACA fusion transcript is the oncogenic driver in fibrolamellar hepatocellular carcinoma, a lethal disease lacking specific therapies. This study reports on the identification, characterization, and immunotherapeutic application of HLA-presented neoantigens specific for the DNAJB1-PRKACA fusion transcript in fibrolamellar hepatocellular carcinoma. DNAJB1-PRKACA-derived HLA class I and HLA class II ligands induce multifunctional cytotoxic CD8 + and T-helper 1 CD4 + T cells, and their cellular processing and presentation in DNAJB1-PRKACA expressing tumor cells is demonstrated by mass spectrometry-based immunopeptidome analysis. Single-cell RNA sequencing further identifies multiple T cell receptors from DNAJB1-PRKACA-specific T cells. Vaccination of a fibrolamellar hepatocellular carcinoma patient, suffering from recurrent short interval disease relapses, with DNAJB1-PRKACA-derived peptides under continued Poly (ADP-ribose) polymerase inhibitor therapy induces multifunctional CD4 + T cells, with an activated T-helper 1 phenotype and high T cell receptor clonality. Vaccine-induced DNAJB1-PRKACA-specific T cell responses persist over time and, in contrast to various previous treatments, are accompanied by durable relapse free survival of the patient for more than 21 months post vaccination. Our preclinical and clinical findings identify the DNAJB1-PRKACA protein as source for immunogenic neoepitopes and corresponding T cell receptors and provide efficacy in a single-patient study of T cell-based immunotherapy specifically targeting this oncogenic fusion. The DNAJB1-PRKACA fusion transcript is the oncogenic driver in fibrolamellar hepatocellular carcinoma, a lethal disease with limited therapeutic options. Here, the authors identify the DNAJB1-PRKACA protein as a source for immunogenic neoepitopes and a potential target of T cell-based immunotherapy.