Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
142 result(s) for "Baumgartner, Ulrich"
Sort by:
Improved isolation strategies to increase the yield and purity of human urinary exosomes for biomarker discovery
Circulating miRNAs are detected in extracellular space and body fluids such as urine. Circulating RNAs can be packaged in secreted urinary extracellular vesicles (uEVs) and thus protected from degradation. Urinary exosome preparations might contain specific miRNAs, relevant as biomarkers in renal and bladder diseases. Major difficulties in application of uEVs into the clinical environment are the high variability and low reproducibility of uEV isolation methods. Here we used five different methods to isolate uEVs and compared the size distribution, morphology, yield, presence of exosomal protein markers and RNA content of uEVs. We present an optimized ultracentrifugation and size exclusion chromatography approach for highly reproducible isolation for 50–150 nm uEVs, corresponding to the exosomes, from 50 ml urine. We profiled the miRNA content of uEVs and total urine from the same samples with the NanoString platform and validated the data using qPCR. Our results indicate that 18 miRNAs, robustly detected in uEVs were always present in the total urine. However, 15 miRNAs could be detected only in the total urine preparations and might represent naked circulating miRNA species. This is a novel unbiased and reproducible strategy for uEVs isolation, content normalization and miRNA cargo analysis, suitable for biomarker discovery studies.
miR-19b enhances proliferation and apoptosis resistance via the EGFR signaling pathway by targeting PP2A and BIM in non-small cell lung cancer
Background Epidermal growth factor receptor ( EGFR ) mutations enable constitutive active downstream signaling of PI3K/AKT, KRAS/ERK and JAK/STAT pathways, and promote tumor progression by inducing uncontrolled proliferation, evasion of apoptosis and migration of non-small cell lung cancer (NSCLC). In addition, such EGFR mutations increase the susceptibility of patients with NSCLC to tyrosine kinase inhibitor (TKI) therapy, but treated patients will invariably relapse with resistant disease. A global understanding of underlying molecular mechanisms of EGFR signaling may improve the management of NSCLC patients. Methods microarray analysis was performed to identify PI3K/AKT-regulated miRNAs. Phosphoproteomic analysis and cell based assays were performed using NSCLC cell lines lentivirally transduced with anti-miR or miR overexpressing constructs. Results Here, we show that 17 miRNAs including members of the miR-17~ 92 cluster are dysregulated following PI3K/AKT inhibition of EGFR mutant NSCLC cells. Bioinformatics analysis revealed that dysregulated miRNAs act in a concerted manner to enhance the activity of the EGFR signaling pathway. These findings were closely mirrored by attenuation of miR-17~ 92 family member miR-19b in NSCLC cell lines which resulted in reduced phosphorylation of ERK, AKT and STAT and effector proteins in EGFR mutant NSCLC cells. Consistent with this finding, cell cycle progression, clonogenic growth and migration were reduced and apoptosis was enhanced. Co-treatment of NSCLC cells with the tyrosine kinase inhibitor (TKI) gefitinib and anti-miR-19b construct reduced migration and clonogenic growth in a synergistic manner suggesting that EGFR and miR-19b act together to control oncogenic processes. Serine/threonine phosphatase PP2A subunit PPP2R5E and BCL2L11 encoding BIM were identified as major targets of miR-19b by target validation assays. Consistent with this finding, PP2A activity was strongly enhanced in NSCLC transduced with anti-miR-19b construct, but not in cells co-transduced with anti-miR-19b and shPPP2R5E , suggesting that PPP2R5E is a major constituent of the PP2A complex. Accordingly, enhanced proliferation by miR-19b was due to targeting PPP2R5E . In contrast, apoptosis resistance was mainly due to targeting BCL2L11 . Conclusion Our results provide insight into the importance of targeting PPP2R5E and BCL2L11 by miR-19b in oncogenic processes of NSCLC. Attenuation of miR-19b expression could potentially be exploited in adjuvant therapy of EGFR mutant NSCLC.
MicroRNA dysregulation in the tumor microenvironment influences the phenotype of pancreatic cancer
Cellular interactions in the tumor microenvironment influence neoplastic progression in pancreatic ductal adenocarcinoma. One underlying mechanism is the induction of the prognostically unfavorable epithelial–mesenchymal-transition-like tumor budding. Our aim is to explore the expression of microRNAs implicated in the regulation of tumor budding focusing on the microenvironment of the invasive front. To this end, RNA from laser-capture-microdissected material of the main tumor, tumor buds, juxta-tumoral stroma, tumor-remote stroma, and non-neoplastic pancreatic parenchyma from pancreatic cancer cases with (n=7) and without (n=6) tumor budding was analyzed by qRT-PCR for the expression of a panel of miRNAs that are known to be implicated in the regulation of epithelial–mesenchymal transition, including miR-21, miR-183, miR-200b, miR-200c, miR-203, miR-205, miR-210, and miR-217. Here we show that at the invasive front of pancreatic ductal adenocarcinoma, specific microRNAs, are differentially expressed between tumor buds and main tumor cells and between cases with and without tumor budding, indicating their involvement in the regulation of the budding phenotype. Notably, miR-200b and miR-200c were significantly downregulated in the tumor buds. Consistent with this finding, they negatively correlated with the expression of epithelial–mesenchymal-transition-associated E-cadherin repressors ZEB1 and ZEB2 in the budding cells (P<0.001). Interestingly, many microRNAs were also dysregulated in juxta-tumoral compared to tumor-remote stroma suggesting that juxta-tumoral stroma contributes to microRNA dysregulation. Notably, miR-200b and miR-200c were strongly downregulated while miR-210 and miR-21 were upregulated in the juxta-tumoral vs tumor-remote stroma in carcinomas with tumor budding. In conclusion, microRNA targeting in both tumor and stromal cells could represent a treatment option for aggressive pancreatic cancer.
Spatial analysis of a complete DIPG-infiltrated brainstem reveals novel ligand-receptor mediators of tumour-to-TME crosstalk
Previous studies have highlighted the capacity of brain cancer cells to functionally interact with the tumour microenvironment (TME). This TME-cancer crosstalk crucially contributes to tumour cell invasion and disease progression. In this study, we performed spatial transcriptomic sequencing analysis of a complete annotated tumour-infiltrated brainstem from a single diffuse intrinsic pontine glioma (DIPG) patient. Gene signatures from ten sequential tumour regions were analysed to assess mechanisms of disease progression and oncogenic interactions with the TME. We identified four distinct tumour subpopulations and assessed respective ligand-receptor pairs that actively promote DIPG tumour progression via crosstalk with endothelial, neuronal and immune cell communities. Our analysis found potential targetable mediators of tumour-to-TME communication, including members of the complement component system and the neuropeptide/GPCR ligand-receptor pair ADCYAP1 - ADCYAP1R1 . These interactions could influence DIPG tumour progression and represent novel therapeutic targets.
Q-Cell Glioblastoma Resource: Proteomics Analysis Reveals Unique Cell-States Are Maintained in 3D Culture
Glioblastoma (GBM) is a treatment-refractory central nervous system (CNS) tumour, and better therapies to treat this aggressive disease are urgently needed. Primary GBM models that represent the true disease state are essential to better understand disease biology and for accurate preclinical therapy assessment. We have previously presented a comprehensive transcriptome characterisation of a panel (n = 12) of primary GBM models (Q-Cell). We have now generated a systematic, quantitative, and deep proteome abundance atlas of the Q-Cell models grown in 3D culture, representing 6167 human proteins. A recent study has highlighted the degree of functional heterogeneity that coexists within individual GBM tumours, describing four cellular states (MES-like, NPC-like, OPC-like and AC-like). We performed comparative proteomic analysis, confirming a good representation of each of the four cell-states across the 13 models examined. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis identified upregulation of a number of GBM-associated cancer pathway proteins. Bioinformatics analysis, using the OncoKB database, identified a number of functional actionable targets that were either uniquely or ubiquitously expressed across the panel. This study provides an in-depth proteomic analysis of the GBM Q-Cell resource, which should prove a valuable functional dataset for future biological and preclinical investigations.
Suppressing recurrence in Sonic Hedgehog subgroup medulloblastoma using the OLIG2 inhibitor CT-179
OLIG2-expressing tumor stem cells have been shown to drive recurrence in Sonic Hedgehog (SHH)-subgroup medulloblastoma (MB) and patients urgently need specific therapies to target this tumor cell population. Here, we investigate the therapeutic potential of the brain-penetrant orally bioavailable, OLIG2 inhibitor CT-179, using SHH-MB explant organoids, PDX and GEM SHH-MB models. We find that CT-179 disrupts OLIG2 dimerization, phosphorylation and DNA binding and alters tumor cell-cycle kinetics, increasing differentiation and apoptosis. CT-179 prolongs survival in SHH-MB PDX and GEM models and potentiates radiotherapy (RT) in vivo. Single cell transcriptomic studies (scRNA-seq) confirm that CT-179 increases differentiation and implicate Cdk4 up-regulation in maintaining proliferation during treatment. Consistent with CDK4 mediating CT-179 resistance, CT-179 combines effectively with the CDK4/6 inhibitor palbociclib, further prolonging survival in vivo. These data support therapeutic targeting of OLIG2+ tumor stem cells in regimens for SHH-driven MB, to improve response, delay recurrence and ultimately improve MB patient outcomes. Previously, OLIG2-expressing stems cells have been identified as having a role in medulloblastoma recurrence. Here, the authors investigate the effects of targeting this OLIG2+ stem cell population in Sonic Hedgehog (SHH) medulloblastoma using CT-179, an OLIG2 inhibitor.
A Drug Screening Pipeline Using 2D and 3D Patient-Derived In Vitro Models for Pre-Clinical Analysis of Therapy Response in Glioblastoma
Glioblastoma is one of the most common and lethal types of primary brain tumor. Despite aggressive treatment with chemotherapy and radiotherapy, tumor recurrence within 6–9 months is common. To overcome this, more effective therapies targeting cancer cell stemness, invasion, metabolism, cell death resistance and the interactions of tumor cells with their surrounding microenvironment are required. In this study, we performed a systematic review of the molecular mechanisms that drive glioblastoma progression, which led to the identification of 65 drugs/inhibitors that we screened for their efficacy to kill patient-derived glioma stem cells in two dimensional (2D) cultures and patient-derived three dimensional (3D) glioblastoma explant organoids (GBOs). From the screening, we found a group of drugs that presented different selectivity on different patient-derived in vitro models. Moreover, we found that Costunolide, a TERT inhibitor, was effective in reducing the cell viability in vitro of both primary tumor models as well as tumor models pre-treated with chemotherapy and radiotherapy. These results present a novel workflow for screening a relatively large groups of drugs, whose results could lead to the identification of more personalized and effective treatment for recurrent glioblastoma.
The dystroglycan receptor maintains glioma stem cells in the vascular niche
Glioblastomas (GBMs) are malignant central nervous system (CNS) neoplasms with a very poor prognosis. They display cellular hierarchies containing self-renewing tumourigenic glioma stem cells (GSCs) in a complex heterogeneous microenvironment. One proposed GSC niche is the extracellular matrix (ECM)-rich perivascular bed of the tumour. Here, we report that the ECM binding dystroglycan (DG) receptor is expressed and functionally glycosylated on GSCs residing in the perivascular niche. Glycosylated αDG is highly expressed and functional on the most aggressive mesenchymal-like (MES-like) GBM tumour compartment. Furthermore, we found that DG acts to maintain an MES-like state via tight control of MAPK activation. Antibody-based blockade of αDG induces robust ERK-mediated differentiation leading to reduced GSC potential. DG was shown to be required for tumour initiation in MES-like GBM, with constitutive loss significantly delaying or preventing tumourigenic potential in-vivo. These findings reveal a central role of the DG receptor, not only as a structural element, but also as a critical factor promoting MES-like GBM and the maintenance of GSCs residing in the perivascular niche.
German federal court rules against ‘tell-a-friend’
According to a ruling of the German Federal Court of Justice ('Bundesgerichtshof'), dated 12 September 2013, German companies are no longer allowed to use 'tell-a-friend' functionalities on their websites. The court considers emails sent via such functionalities as unsolicited marketing messages (ie, spam emails) for which the company providing such tell-a-friend functionality on its website is responsible.