Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
206
result(s) for
"Bechtol, K."
Sort by:
The Dark Energy Survey Image Processing Pipeline
by
Diehl, H. T.
,
Buckley-Geer, E.
,
Sako, M.
in
cosmology: observations
,
Dark energy
,
Data reduction
2018
The Dark Energy Survey (DES) is a five-year optical imaging campaign with the goal of understanding the origin of cosmic acceleration. DES performs a ∼5000 deg2 survey of the southern sky in five optical bands (g, r, i, z, Y) to a depth of ∼24th magnitude. Contemporaneously, DES performs a deep, time-domain survey in four optical bands (g, r, i, z) over ∼27 deg2. DES exposures are processed nightly with an evolving data reduction pipeline and evaluated for image quality to determine if they need to be retaken. Difference imaging and transient source detection are also performed in the time domain component nightly. On a bi-annual basis, DES exposures are reprocessed with a refined pipeline and coadded to maximize imaging depth. Here we describe the DES image processing pipeline in support of DES science, as a reference for users of archival DES data, and as a guide for future astronomical surveys.
Journal Article
Fermi Observations of High-Energy Gamma-Ray Emission from GRB 080916C
2009
Gamma-ray bursts (GRBs) are highly energetic explosions signaling the death of massive stars in distant galaxies. The Gamma-ray Burst Monitor and Large Area Telescope onboard the Fermi Observatory together record GRBs over a broad energy range spanning about 7 decades of gamma-ray energy. In September 2008, Fermi observed the exceptionally luminous GRB 080916C, with the largest apparent energy release yet measured. The high-energy gamma rays are observed to start later and persist longer than the lower energy photons. A simple spectral form fits the entire GRB spectrum, providing strong constraints on emission models. The known distance of the burst enables placing lower limits on the bulk Lorentz factor of the outflow and on the quantum gravity mass.
Journal Article
Astrometric Calibration and Performance of the Dark Energy Camera
by
Diehl, H. T.
,
Allam, S.
,
Gerdes, D. W.
in
astrometry
,
atmospheric effects
,
instrumentation: detectors
2017
We characterize the ability of the Dark Energy Camera (DECam) to perform relative astrometry across its 500 Mpix, 3-deg2 science field of view and across four years of operation. This is done using internal comparisons of ∼4 × 107 measurements of high signal-to-noise ratio stellar images obtained in repeat visits to fields of moderate stellar density, with the telescope dithered to move the sources around the array. An empirical astrometric model includes terms for optical distortions; stray electric fields in the CCD detectors; chromatic terms in the instrumental and atmospheric optics; shifts in CCD relative positions of up to 10 m when the DECam temperature cycles; and low-order distortions to each exposure from changes in atmospheric refraction and telescope alignment. Errors in this astrometric model are dominated by stochastic variations with typical amplitudes of 10-30 mas (in a 30 s exposure) and 5′-10′ coherence length, plausibly attributed to Kolmogorov-spectrum atmospheric turbulence. The size of these atmospheric distortions is not closely related to the seeing. Given an astrometric reference catalog at density 0.7 arcmin − 2 , e.g., from Gaia, the typical atmospheric distortions can be interpolated to 7 mas rms accuracy (for 30 s exposures) with 1 ′ coherence length in residual errors. Remaining detectable error contributors are 2-4 mas rms from unmodelled stray electric fields in the devices, and another 2-4 mas rms from focal plane shifts between camera thermal cycles. Thus the astrometric solution for a single DECam exposure is accurate to 3-6 mas ( 0.02 pixels, or 300 nm) on the focal plane, plus the stochastic atmospheric distortion.
Journal Article
Detection of the Characteristic Pion-Decay Signature in Supernova Remnants
2013
Cosmic rays are particles (mostly protons) accelerated to relativistic speeds. Despite wide agreement that supernova remnants (SNRs) are the sources of galactic cosmic rays, unequivocal evidence for the acceleration of protons in these objects is still lacking. When accelerated protons encounter interstellar material, they produce neutral pions, which in turn decay into gamma rays. This offers a compelling way to detect the acceleration sites of protons. The identification of pion-decay gamma rays has been difficult because high-energy electrons also produce gamma rays via bremsstrahlung and inverse Compton scattering. We detected the characteristic pion-decay feature in the gamma-ray spectra of two SNRs, IC 443 and W44, with the Fermi Large Area Telescope. This detection provides direct evidence that cosmic-ray protons are accelerated in SNRs.
Journal Article
Fermi-LAT Observations of the Gamma-Ray Burst GRB 130427A
2014
The observations of the exceptionally bright gamma-ray burst (GRB) 130427A by the Large Area Telescope aboard the Fermi Gamma-ray Space Telescope provide constraints on the nature of these unique astrophysical sources. GRB 130427A had the largest fluence, highest-energy photon (95 GeV), longest γ-ray duration (20 hours), and one of the largest isotropie energy releases ever observed from a GRB. Temporal and spectral analyses of GRB 130427A challenge the widely accepted model that the nonthermal high-energy emission in the afterglow phase of GRBs is synchrotron emission radiated by electrons accelerated at an external shock.
Journal Article
Endothelial Interleukin-8: A Novel Inhibitor of Leukocyte-Endothelial Interactions
by
Luis, E. A.
,
Gimbrone, M. A.
,
Brock, A. F.
in
Amino Acid Sequence
,
Biological and medical sciences
,
Biological Factors - pharmacology
1989
Certain inflammatory stimuli render cultured human vascular endothelial cells hyper-adhesive for neutrophils. This state is transient and reversible, in part because activated endothelial cells secrete a leukocyte adhesion inhibitor (LAI). LAI was identified as endothelial interleukin-8 (IL-8), the predominant species of which is an extended amino-terminal IL-8 variant. At nanomolar concentrations, purified endothelial IL-8 and recombinant human IL-8 inhibit neutrophil adhesion to cytokine-activated endothelial monolayers and protect these monolayers from neutrophil-mediated damage. These findings suggest that endothelial-derived IL-8 may function to attenuate inflammatory events at the interface between vessel wall and blood.
Journal Article
Gamma-Ray Flares from the Crab Nebula
2011
A young and energetic pulsar powers the well-known Crab Nebula. Here, we describe two separate gamma-ray (photon energy greater than 100 mega-electron volts) flares from this source detected by the Large Area Telescope on board the Fermi Gamma-ray Space Telescope. The first flare occurred in February 2009 and lasted approximately 16 days. The second flare was detected in September 2010 and lasted approximately 4 days. During these outbursts, the gamma-ray flux from the nebula increased by factors of four and six, respectively. The brevity of the flares implies that the gamma rays were emitted via synchrotron radiation from peta-electron-volt (10¹⁵ electron volts) electrons in a region smaller than 1.4 x 10⁻² parsecs. These are the highest-energy particles that can be associated with a discrete astronomical source, and they pose challenges to particle acceleration theory.
Journal Article
A limit on the variation of the speed of light arising from quantum gravity effects
by
Bonamente, E.
,
Ritz, S.
,
Sadrozinski, H. F.-W.
in
Astronomi och astrofysik
,
Astronomy
,
Astronomy and astrophysics
2009
GRB 090510: a test for special relativity
Observations of the distant and short γ-ray burst GRB 090510 with the Fermi Gamma-ray Space Telescope have provided an opportunity to test a central prediction of Einstein's special theory of relativity — the Lorentz invariance. This holds that all observers measure exactly the same speed of light in a vacuum, independent of photon energy. A key test of the violation of Lorentz invariance is a possible variation of photon speed with energy. Accumulated over cosmological light-travel times, even a tiny variation in photon speed should become observable — as for instance sharp features in the light curve of a γ-ray burst. No evidence for the violation of Lorentz invariance was found in the GRB 090510 spectrum, at least down to a limit of the Planck length divided by 1.2. This argues against quantum-gravity theories where the quantum nature of space–time linearly alters the speed of light with photon energy.
Lorentz invariance — the postulate that all observers measure exactly the same speed of light in vacuum, independent of photon energy — is a cornerstone of Einstein's special relativity, but it has been suggested that it might break near the Planck scale. A possible variation of photon speed with energy is a key test for this proposed violation; here, by studying sharp features in γ-ray burst light-curves to look for even tiny variations in photon speed, no evidence for the violation of Lorentz invariance is found.
A cornerstone of Einstein’s special relativity is Lorentz invariance—the postulate that all observers measure exactly the same speed of light in vacuum, independent of photon-energy. While special relativity assumes that there is no fundamental length-scale associated with such invariance, there is a fundamental scale (the Planck scale,
l
Planck
≈ 1.62 × 10
-33
cm or
E
Planck
=
M
Planck
c
2
≈ 1.22 × 10
19
GeV), at which quantum effects are expected to strongly affect the nature of space–time. There is great interest in the (not yet validated) idea that Lorentz invariance might break near the Planck scale. A key test of such violation of Lorentz invariance is a possible variation of photon speed with energy
1
,
2
,
3
,
4
,
5
,
6
,
7
. Even a tiny variation in photon speed, when accumulated over cosmological light-travel times, may be revealed by observing sharp features in γ-ray burst (GRB) light-curves
2
. Here we report the detection of emission up to ∼31 GeV from the distant and short GRB 090510. We find no evidence for the violation of Lorentz invariance, and place a lower limit of 1.2
E
Planck
on the scale of a linear energy dependence (or an inverse wavelength dependence), subject to reasonable assumptions about the emission (equivalently we have an upper limit of
l
Planck
/1.2 on the length scale of the effect). Our results disfavour quantum-gravity theories
3
,
6
,
7
in which the quantum nature of space–time on a very small scale linearly alters the speed of light.
Journal Article
A change in the optical polarization associated with a γ-ray flare in the blazar 3C 279
2010
Astrophysical jet power
A small fraction of active galaxies are extreme phenomena, powered by the release of gravitational energy near the supermassive black hole at the galaxy's centre. Just what goes on in the emitting zone, where inflowing gases interact with the outflowing jets, is not clear. One such extreme object is the blazar 3C 279. Multi-band observations of 3C 279 using the Fermi space telescope have revealed a spectacular γ-ray flare coincident with a dramatic change of optical polarization angle. This points to co-spatiality of the optical and γ-ray emission regions and indicates a highly ordered jet magnetic field. Future observation of cosmic accelerators of this type should throw light on how the immense power required to accelerate matter to close to the speed of light is generated.
It is widely accepted that strong and variable radiation detected over all accessible energy bands in a number of active galaxies arises from a relativistic, Doppler-boosted jet pointing close to our line of sight. However, the size of the emitting zone and the location of this region relative to the central supermassive black hole are poorly understood. Here, the coincidence of a γ-ray flare with a dramatic change of optical polarization angle is reported, providing evidence for co-spatiality of optical and γ-ray emission regions and indicating a highly ordered jet magnetic field.
It is widely accepted that strong and variable radiation detected over all accessible energy bands in a number of active galaxies arises from a relativistic, Doppler-boosted jet pointing close to our line of sight
1
. The size of the emitting zone and the location of this region relative to the central supermassive black hole are, however, poorly known, with estimates ranging from light-hours to a light-year or more. Here we report the coincidence of a gamma (γ)-ray flare with a dramatic change of optical polarization angle. This provides evidence for co-spatiality of optical and γ-ray emission regions and indicates a highly ordered jet magnetic field. The results also require a non-axisymmetric structure of the emission zone, implying a curved trajectory for the emitting material within the jet, with the dissipation region located at a considerable distance from the black hole, at about 10
5
gravitational radii.
Journal Article
Gamma-Ray Emission Concurrent with the Nova in the Symbiotic Binary V407 Cygni
by
Bonamente, E.
,
de Palma, F.
,
Giordano, F.
in
Acceleration
,
ambient air
,
Astronomical observations
2010
Novae are thermonuclear explosions on a white dwarf surface fueled by mass accreted from a companion star. Current physical models posit that shocked expanding gas from the nova shell can produce x-ray emission, but emission at higher energies has not been widely expected. Here, we report the Fermi Large Area Telescope detection of variable γ-ray emission (0.1 to 10 billion electron volts) from the recently detected optical nova of the symbiotic star V407 Cygni. We propose that the material of the nova shell interacts with the dense ambient medium of the red giant primary and that particles can be accelerated effectively to produce π° decay γ-rays from proton-proton interactions. Emission involving inverse Compton scattering of the red giant radiation is also considered and is not ruled out.
Journal Article