Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
LanguageLanguage
-
SubjectSubject
-
Item TypeItem Type
-
DisciplineDiscipline
-
YearFrom:-To:
-
More FiltersMore FiltersIs Peer Reviewed
Done
Filters
Reset
254
result(s) for
"Beck, Susanne"
Sort by:
Targeted Ablation of Crb1 and Crb2 in Retinal Progenitor Cells Mimics Leber Congenital Amaurosis
by
Lundvig, Ditte M. S.
,
Sothilingam, Vithiyanjali
,
Pellissier, Lucie P.
in
Animals
,
Cell adhesion & migration
,
Cell cycle
2013
Development in the central nervous system is highly dependent on the regulation of the switch from progenitor cell proliferation to differentiation, but the molecular and cellular events controlling this process remain poorly understood. Here, we report that ablation of Crb1 and Crb2 genes results in severe impairment of retinal function, abnormal lamination and thickening of the retina mimicking human Leber congenital amaurosis due to loss of CRB1 function. We show that the levels of CRB1 and CRB2 proteins are crucial for mouse retinal development, as they restrain the proliferation of retinal progenitor cells. The lack of these apical proteins results in altered cell cycle progression and increased number of mitotic cells leading to an increased number of late-born cell types such as rod photoreceptors, bipolar and Müller glia cells in postmitotic retinas. Loss of CRB1 and CRB2 in the retina results in dysregulation of target genes for the Notch1 and YAP/Hippo signaling pathways and increased levels of P120-catenin. Loss of CRB1 and CRB2 result in altered progenitor cell cycle distribution with a decrease in number of late progenitors in G1 and an increase in S and G2/M phase. These findings suggest that CRB1 and CRB2 suppress late progenitor pool expansion by regulating multiple proliferative signaling pathways.
Journal Article
Mutations in the unfolded protein response regulator ATF6 cause the cone dysfunction disorder achromatopsia
by
Weisschuh, Nicole
,
Menendez, Irene Gonzalez
,
Lin, Jonathan H
in
13/106
,
45/23
,
631/208/2489/1512
2015
Susanne Kohl and colleagues report mutations in
ATF6
, a regulator of the unfolded protein response pathway, that cause a familial form of achromatopsia. Their results indicate a role for ATF6 in foveal development rather than a direct role in the cone phototransduction pathway.
Achromatopsia (ACHM) is an autosomal recessive disorder characterized by color blindness, photophobia, nystagmus and severely reduced visual acuity. Using homozygosity mapping and whole-exome and candidate gene sequencing, we identified ten families carrying six homozygous and two compound-heterozygous mutations in the
ATF6
gene (encoding activating transcription factor 6A), a key regulator of the unfolded protein response (UPR) and cellular endoplasmic reticulum (ER) homeostasis. Patients had evidence of foveal hypoplasia and disruption of the cone photoreceptor layer. The ACHM-associated
ATF6
mutations attenuate ATF6 transcriptional activity in response to ER stress.
Atf6
−/−
mice have normal retinal morphology and function at a young age but develop rod and cone dysfunction with increasing age. This new ACHM-related gene suggests a crucial and unexpected role for ATF6A in human foveal development and cone function and adds to the list of genes that, despite ubiquitous expression, when mutated can result in an isolated retinal photoreceptor phenotype.
Journal Article
Restoration of Cone Vision in the CNGA3−/− Mouse Model of Congenital Complete Lack of Cone Photoreceptor Function
by
Bai, Lin
,
Krishnamoorthy, Vidhyasankar
,
Biel, Martin
in
Animals
,
Cell death
,
Cloning, Molecular
2010
Congenital absence of cone photoreceptor function is associated with strongly impaired daylight vision and loss of color discrimination in human achromatopsia. Here, we introduce viral gene replacement therapy as a potential treatment for this disease in the CNGA3−/− mouse model. We show that such therapy can restore cone-specific visual processing in the central nervous system even if cone photoreceptors had been nonfunctional from birth. The restoration of cone vision was assessed at different stages along the visual pathway. Treated CNGA3−/− mice were able to generate cone photoreceptor responses and to transfer these signals to bipolar cells. In support, we found morphologically that treated cones expressed regular cyclic nucleotide-gated (CNG) channel complexes and opsins in outer segments, which previously they did not. Moreover, expression of CNGA3 normalized cyclic guanosine monophosphate (cGMP) levels in cones, delayed cone cell death and reduced the inflammatory response of Müller glia cells that is typical of retinal degenerations. Furthermore, ganglion cells from treated, but not from untreated, CNGA3−/− mice displayed cone-driven, light-evoked, spiking activity, indicating that signals generated in the outer retina are transmitted to the brain. Finally, we demonstrate that this newly acquired sensory information was translated into cone-mediated, vision-guided behavior.
Journal Article
Towards a Quantitative OCT Image Analysis
by
Mühlfriedel, Regine
,
Garcia Garrido, Marina
,
Schraermeyer, Ulrich
in
Angiography
,
Animal models
,
Animal species
2014
Optical coherence tomography (OCT) is an invaluable diagnostic tool for the detection and follow-up of retinal pathology in patients and experimental disease models. However, as morphological structures and layering in health as well as their alterations in disease are complex, segmentation procedures have not yet reached a satisfactory level of performance. Therefore, raw images and qualitative data are commonly used in clinical and scientific reports. Here, we assess the value of OCT reflectivity profiles as a basis for a quantitative characterization of the retinal status in a cross-species comparative study.
Spectral-Domain Optical Coherence Tomography (OCT), confocal Scanning-Laser Ophthalmoscopy (SLO), and Fluorescein Angiography (FA) were performed in mice (Mus musculus), gerbils (Gerbillus perpadillus), and cynomolgus monkeys (Macaca fascicularis) using the Heidelberg Engineering Spectralis system, and additional SLOs and FAs were obtained with the HRA I (same manufacturer). Reflectivity profiles were extracted from 8-bit greyscale OCT images using the ImageJ software package (http://rsb.info.nih.gov/ij/).
Reflectivity profiles obtained from OCT scans of all three animal species correlated well with ex vivo histomorphometric data. Each of the retinal layers showed a typical pattern that varied in relative size and degree of reflectivity across species. In general, plexiform layers showed a higher level of reflectivity than nuclear layers. A comparison of reflectivity profiles from specialized retinal regions (e.g. visual streak in gerbils, fovea in non-human primates) with respective regions of human retina revealed multiple similarities. In a model of Retinitis Pigmentosa (RP), the value of reflectivity profiles for the follow-up of therapeutic interventions was demonstrated.
OCT reflectivity profiles provide a detailed, quantitative description of retinal layers and structures including specialized retinal regions. Our results highlight the potential of this approach in the long-term follow-up of therapeutic strategies.
Journal Article
Accessory heterozygous mutations in cone photoreceptor CNGA3 exacerbate CNG channel–associated retinopathy
by
Weisschuh, Nicole
,
Biel, Martin
,
Lukowski, Robert
in
Alleles
,
Amino Acid Substitution
,
Animals
2018
Mutations in CNGA3 and CNGB3, the genes encoding the subunits of the tetrameric cone photoreceptor cyclic nucleotide-gated ion channel, cause achromatopsia, a congenital retinal disorder characterized by loss of cone function. However, a small number of patients carrying the CNGB3/c.1208G>A;p.R403Q mutation present with a variable retinal phenotype ranging from complete and incomplete achromatopsia to moderate cone dysfunction or progressive cone dystrophy. By exploring a large patient cohort and published cases, we identified 16 unrelated individuals who were homozygous or (compound-)heterozygous for the CNGB3/c.1208G>A;p.R403Q mutation. In-depth genetic and clinical analysis revealed a co-occurrence of a mutant CNGA3 allele in a high proportion of these patients (10 of 16), likely contributing to the disease phenotype. To verify these findings, we generated a Cngb3R403Q/R403Q mouse model, which was crossbred with Cnga3-deficient (Cnga3-/-) mice to obtain triallelic Cnga3+/- Cngb3R403Q/R403Q mutants. As in human subjects, there was a striking genotype-phenotype correlation, since the presence of 1 Cnga3-null allele exacerbated the cone dystrophy phenotype in Cngb3R403Q/R403Q mice. These findings strongly suggest a digenic and triallelic inheritance pattern in a subset of patients with achromatopsia/severe cone dystrophy linked to the CNGB3/p.R403Q mutation, with important implications for diagnosis, prognosis, and genetic counseling.
Journal Article
Long-term consequences of developmental vascular defects on retinal vessel homeostasis and function in a mouse model of Norrie disease
by
Garcia Garrido, Marina
,
Feng, Yuxi
,
Sothilingam, Vithiyanjali
in
Abnormalities
,
Angiogenesis
,
Angiography
2017
Loss of Norrin signalling due to mutations in the Norrie disease pseudoglioma gene causes severe vascular defects in the retina, leading to visual impairment and ultimately blindness. While the emphasis of experimental work so far was on the developmental period, we focus here on disease mechanisms that induce progression into severe adult disease. The goal of this study was the comprehensive analysis of the long-term effects of the absence of Norrin on vascular homeostasis and retinal function. In a mouse model of Norrie disease retinal vascular morphology and integrity were studied by means of in vivo angiography; the vascular constituents were assessed in detailed histological analyses using quantitative retinal morphometry. Finally, electroretinographic analyses were performed to assess the retinal function in adult Norrin deficient animals. We could show that the primary developmental defects not only persisted but developed into further vascular abnormalities and microangiopathies. In particular, the overall vessel homeostasis, the vascular integrity, and also the cellular constituents of the vascular wall were affected in the adult Norrin deficient retina. Moreover, functional analyses indicated to persistent hypoxia in the neural retina which was suggested as one of the major driving forces of disease progression. In summary, our data provide evidence that the key to adult Norrie disease are ongoing vascular modifications, driven by the persistent hypoxic conditions, which are ineffective to compensate for the primary Norrin-dependent defects.
Journal Article
Multi-disciplinary Perspectives on Citizen Science—Synthesizing Five Paradigms of Citizen Involvement
by
Sauermann, Henry
,
Fraisl, Dilek
,
Beck, Susanne
in
2023 AD
,
Chronic fatigue syndrome
,
Citizen participation
2024
Research on Open Innovation in Science (OIS) investigates how open and collaborative practices influence the scientific and societal impact of research. Since 2019, the OIS Research Conference has brought together scholars and practitioners from diverse backgrounds to discuss OIS research and case examples. In this meeting report, we describe four session formats that have allowed our multi-disciplinary community to have productive discussions around opportunities and challenges related to citizen involvement in research. However, these sessions also highlight the need for a better understanding of the underlying rationales of citizen involvement in an increasingly diverse project landscape. Building on the discussions at the 2023 and prior editions of the conference, we outline a conceptual framework of five crowd paradigms and present an associated tool that can aid in understanding how citizen involvement in particular projects can help advance science. We illustrate this tool using cases presented at the 2023 conference, and discuss how it can facilitate discussions at future conferences as well as guide future research and practice in citizen science. Keywords: Open Innovation in Science (OIS), open science, citizen science, crowd science, crowd paradigms
Journal Article
The Value of Scientific Knowledge Dissemination for Scientists—A Value Capture Perspective
by
Beukel, Karin
,
Beck, Susanne
,
Poetz, Marion
in
Business education relationship
,
Collaboration
,
Entrepreneurship
2019
Scientific knowledge dissemination is necessary to collaboratively develop solutions to today’s challenges among scientific, public, and commercial actors. Building on this, recent concepts (e.g., Third Mission) discuss the role and value of different dissemination mechanisms for increasing societal impact. However, the value individual scientists receive in exchange for disseminating knowledge differs across these mechanisms, which, consequently, affects their selection. So far, value capture mechanisms have mainly been described as appropriating monetary rewards in exchange for scientists’ knowledge (e.g., patenting). However, most knowledge dissemination activities in science do not directly result in capturing monetary value (e.g., social engagement). By taking a value capture perspective, this article conceptualizes and explores how individual scientists capture value from disseminating their knowledge. Results from our qualitative study indicate that scientists’ value capture consists of a measureable objective part (e.g., career promotion) and a still unconsidered subjective part (e.g., social recognition), which is perceived as valuable due to scientists’ needs. By advancing our understanding of value capture in science, scientists’ selection of dissemination mechanisms can be incentivized to increase both the value captured by themselves and society. Hence, policy makers and university managers can contribute to overcoming institutional and ecosystem barriers and foster scientists’ engagement with society.
Journal Article
Scale Adjustments to Facilitate Two-Dimensional Measurements in OCT Images
by
Garcia Garrido, Marina
,
Beck, Susanne C.
,
Seeliger, Mathias W.
in
Alginic acid
,
Animals
,
Balances (scales)
2015
To address the problem of unequal scales for the measurement of two-dimensional structures in OCT images, and demonstrate the use of intra¬ocular objects of known dimensions in the murine eye for the equal calibration of axes.
The first part of this work describes the mathematical foundation of major distortion effects introduced by X-Y scaling differences. Illustrations were generated with CorelGraph X3 software. The second part bases on image data obtained with a HRA2 Spectralis (Heidelberg Engineering) in SV129 wild-type mice. Subretinally and intravitreally implanted microbeads, alginate capsules with a diameter of 154±5 μm containing GFP-marked mesenchymal stem cells (CellBeads), were used as intraocular objects for calibration.
The problems encountered with two-dimensional measurements in cases of unequal scales are demonstrated and an estimation of the resulting errors is provided. Commonly, the Y axis is reliably calibrated using outside standards like histology or manufacturer data. We show here that intraocular objects like dimensionally stable spherical alginate capsules allow for a two-dimensional calibration of the acquired OCT raw images by establishing a relation between X and Y axis data. For our setup, a correction factor of about 3.3 was determined using both epiretinally and subretinally positioned beads (3.350 ± 0.104 and 3.324 ± 0.083, respectively).
In this work, we highlight the distortion-related problems in OCT image analysis induced by unequal X and Y scales. As an exemplary case, we provide data for a two-dimensional in vivo OCT image calibration in mice using intraocular alginate capsules. Our results demonstrate the need for a proper two-dimensional calibration of OCT data, and we believe that equal scaling will certainly improve the efficiency of OCT image analysis.
Journal Article
Targeting CSF1R Alone or in Combination with PD1 in Experimental Glioma
by
Schittenhelm, Jens
,
Tabatabai, Ghazaleh
,
Tsiami, Foteini
in
Antibodies
,
Apoptosis
,
Brain cancer
2021
Glioblastoma is an aggressive primary tumor of the central nervous system. Targeting the immunosuppressive glioblastoma-associated microenvironment is an interesting therapeutic approach. Tumor-associated macrophages represent an abundant population of tumor-infiltrating host cells with tumor-promoting features. The colony stimulating factor-1/ colony stimulating factor-1 receptor (CSF-1/CSF1R) axis plays an important role for macrophage differentiation and survival. We thus aimed at investigating the antiglioma activity of CSF1R inhibition alone or in combination with blockade of programmed death (PD) 1. We investigated combination treatments of anti-CSF1R alone or in combination with anti-PD1 antibodies in an orthotopic syngeneic glioma mouse model, evaluated post-treatment effects and assessed treatment-induced cytotoxicity in a coculture model of patient-derived microtumors (PDM) and autologous tumor-infiltrating lymphocytes (TILs) ex vivo. Anti-CSF1R monotherapy increased the latency until the onset of neurological symptoms. Combinations of anti-CSF1R and anti-PD1 antibodies led to longterm survivors in vivo. Furthermore, we observed treatment-induced cytotoxicity of combined anti-CSF1R and anti-PD1 treatment in the PDM/TILs cocultures ex vivo. Our results identify CSF1R as a promising therapeutic target for glioblastoma, potentially in combination with PD1 inhibition.
Journal Article