Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
138 result(s) for "Becker, Lance"
Sort by:
Comprehensive analysis of phospholipids in the brain, heart, kidney, and liver: brain phospholipids are least enriched with polyunsaturated fatty acids
It is commonly accepted that brain phospholipids are highly enriched with long-chain polyunsaturated fatty acids (PUFAs). However, the evidence for this remains unclear. We used HPLC–MS to analyze the content and composition of phospholipids in rat brain and compared it to the heart, kidney, and liver. Phospholipids typically contain one PUFA, such as 18:2, 20:4, or 22:6, and one saturated fatty acid, such as 16:0 or 18:0. However, we found that brain phospholipids containing monounsaturated fatty acids in the place of PUFAs are highly elevated compared to phospholipids in the heart, kidney, and liver. The relative content of phospholipid containing PUFAs is ~ 60% in the brain, whereas it is over 90% in other tissues. The most abundant species of phosphatidylcholine (PC) is PC(16:0/18:1) in the brain, whereas PC(18:0/20:4) and PC(16:0/20:4) are predominated in other tissues. Moreover, several major species of plasmanyl and plasmenyl phosphatidylethanolamine are found to contain monounsaturated fatty acid in the brain only. Overall, our data clearly show that brain phospholipids are the least enriched with PUFAs of the four major organs, challenging the common belief that the brain is highly enriched with PUFAs.
Exogenous mitochondrial transplantation improves survival and neurological outcomes after resuscitation from cardiac arrest
Background Mitochondrial transplantation (MTx) is an emerging but poorly understood technology with the potential to mitigate severe ischemia–reperfusion injuries after cardiac arrest (CA). To address critical gaps in the current knowledge, we test the hypothesis that MTx can improve outcomes after CA resuscitation. Methods This study consists of both in vitro and in vivo studies. We initially examined the migration of exogenous mitochondria into primary neural cell culture in vitro. Exogenous mitochondria extracted from the brain and muscle tissues of donor rats and endogenous mitochondria in the neural cells were separately labeled before co-culture. After a period of 24 h following co-culture, mitochondrial transfer was observed using microscopy. In vitro adenosine triphosphate (ATP) contents were assessed between freshly isolated and frozen-thawed mitochondria to compare their effects on survival. Our main study was an in vivo rat model of CA in which rats were subjected to 10 min of asphyxial CA followed by resuscitation. At the time of achieving successful resuscitation, rats were randomly assigned into one of three groups of intravenous injections: vehicle, frozen-thawed, or fresh viable mitochondria. During 72 h post-CA, the therapeutic efficacy of MTx was assessed by comparison of survival rates. The persistence of labeled donor mitochondria within critical organs of recipient animals 24 h post-CA was visualized via microscopy. Results The donated mitochondria were successfully taken up into cultured neural cells. Transferred exogenous mitochondria co-localized with endogenous mitochondria inside neural cells. ATP content in fresh mitochondria was approximately four times higher than in frozen-thawed mitochondria. In the in vivo survival study, freshly isolated functional mitochondria, but not frozen-thawed mitochondria, significantly increased 72-h survival from 55 to 91% ( P  = 0.048 vs. vehicle). The beneficial effects on survival were associated with improvements in rapid recovery of arterial lactate and glucose levels, cerebral microcirculation, lung edema, and neurological function. Labeled mitochondria were observed inside the vital organs of the surviving rats 24 h post-CA. Conclusions MTx performed immediately after resuscitation improved survival and neurological recovery in post-CA rats. These results provide a foundation for future studies to promote the development of MTx as a novel therapeutic strategy to save lives currently lost after CA.
Ascorbic acid, corticosteroids, and thiamine in sepsis: a review of the biologic rationale and the present state of clinical evaluation
The combination of thiamine, ascorbic acid, and hydrocortisone has recently emerged as a potential adjunctive therapy to antibiotics, infectious source control, and supportive care for patients with sepsis and septic shock. In the present manuscript, we provide a comprehensive review of the pathophysiologic basis and supporting research for each element of the thiamine, ascorbic acid, and hydrocortisone drug combination in sepsis. In addition, we describe potential areas of synergy between these therapies and discuss the strengths/weaknesses of the two studies to date which have evaluated the drug combination in patients with severe infection. Finally, we describe the current state of current clinical practice as it relates to the thiamine, ascorbic acid, and hydrocortisone combination and present an overview of the randomized, placebo-controlled, multi-center Ascorbic acid, Corticosteroids, and Thiamine in Sepsis (ACTS) trial and other planned/ongoing randomized clinical trials.
Mitochondrial transplantation therapy for ischemia reperfusion injury: a systematic review of animal and human studies
Background Mitochondria are essential organelles that provide energy for cellular functions, participate in cellular signaling and growth, and facilitate cell death. Based on their multifactorial roles, mitochondria are also critical in the progression of critical illnesses. Transplantation of mitochondria has been reported as a potential promising approach to treat critical illnesses, particularly ischemia reperfusion injury (IRI). However, a systematic review of the relevant literature has not been conducted to date. Here, we systematically reviewed the animal and human studies relevant to IRI to summarize the evidence for mitochondrial transplantation. Methods We searched MEDLINE, the Cochrane library, and Embase and performed a systematic review of mitochondrial transplantation for IRI in both preclinical and clinical studies. We developed a search strategy using a combination of keywords and Medical Subject Heading/Emtree terms. Studies including cell-mediated transfer of mitochondria as a transfer method were excluded. Data were extracted to a tailored template, and data synthesis was descriptive because the data were not suitable for meta-analysis. Results Overall, we identified 20 animal studies and two human studies. Among animal studies, 14 (70%) studies focused on either brain or heart IRI. Both autograft and allograft mitochondrial transplantation were used in 17 (85%) animal studies. The designs of the animal studies were heterogeneous in terms of the route of administration, timing of transplantation, and dosage used. Twelve (60%) studies were performed in a blinded manner. All animal studies reported that mitochondrial transplantation markedly mitigated IRI in the target tissues, but there was variation in biological biomarkers and pathological changes. The human studies were conducted with a single-arm, unblinded design, in which autologous mitochondrial transplantation was applied to pediatric patients who required extracorporeal membrane oxygenation (ECMO) for IRI–associated myocardial dysfunction after cardiac surgery. Conclusion The evidence gathered from our systematic review supports the potential beneficial effects of mitochondrial transplantation after IRI, but its clinical translation remains limited. Further investigations are thus required to explore the mechanisms of action and patient outcomes in critical settings after mitochondrial transplantation. Systematic review registration The study was registered at UMIN under the registration number UMIN000043347.
Cardiopulmonary resuscitation in special circumstances
Cardiopulmonary resuscitation prioritises treatment for cardiac arrests from a primary cardiac cause, which make up the majority of treated cardiac arrests. Early chest compressions and, when indicated, a defibrillation shock from a bystander give the best chance of survival with a good neurological status. Cardiac arrest can also be caused by special circumstances, such as asphyxia, trauma, pulmonary embolism, accidental hypothermia, anaphylaxis, or COVID-19, and during pregnancy or perioperatively. Cardiac arrests in these circumstances represent an increasing proportion of all treated cardiac arrests, often have a preventable cause, and require additional interventions to correct a reversible cause during resuscitation. The evidence for treating these conditions is mostly of low or very low certainty and further studies are needed. Irrespective of the cause, treatments for cardiac arrest are time sensitive and most effective when given early—every minute counts.
The role of homogenization cycles and Poloxamer 188 on the quality of mitochondria isolated for use in mitochondrial transplantation therapy
Mitochondrial transplantation (MTx) offers a promising therapeutic approach to mitigate mitochondrial dysfunction in conditions such as ischemia–reperfusion (IR) injury. The quality and viability of donor mitochondria are critical to MTx success, necessitating the optimization of isolation protocols. This study aimed to assess a rapid mitochondrial isolation method, examine the relationship between mitochondrial size and membrane potential, and evaluate the potential benefits of Poloxamer 188 (P-188) in improving mitochondrial quality during the isolation process. Mitochondria were isolated from pectoral muscle biopsies of adult male Sprague–Dawley rats using an automated homogenizer. MitoTracker Deep Red (MTDR) staining and flow cytometry were used to assess mitochondrial purity, while the JC-1 assay evaluated membrane potential. Mitochondrial size groups were compared for membrane potential differences. Homogenization frequency and P-188 supplementation (1 mM) were assessed for their effects on mitochondrial membrane potential and particle size, and particle counts. The rapid isolation method yielded mitochondria that retained sufficient membrane potential to be effectively inhibited by carbonyl cyanide 3-chlorophenylhydrazone (CCCP), a disruptor of mitochondrial membrane potential. Larger mitochondria exhibited significantly higher JC-1 ratios, indicating greater membrane potential. Excessive homogenization (10 cycles) reduced membrane potential compared to 3 cycles homogenization ( P  = 0.026). P-188 significantly increased the JC-1 ratio from 10.26 ± 2.57 to 33.78 ± 17.78 ( P  = 0.023). Particle size and count analysis revealed that 10 cycles homogenization significantly increased particle count compared to 3 cycles homogenization ( P  = 0.0001), but was associated with smaller particle sizes ( P  = 0.0031). The rapid mitochondrial isolation method produced viable mitochondria, with larger mitochondria exhibiting superior membrane potential. Reducing homogenization frequency and incorporating P-188 improved mitochondrial quality and preserved particle size. These strategies offer promising strategies for optimizing MTx protocols. Further refinement of these techniques is necessary for their clinical application in MTx therapy.
Crowdsourcing—Harnessing the Masses to Advance Health and Medicine, a Systematic Review
Objective Crowdsourcing research allows investigators to engage thousands of people to provide either data or data analysis. However, prior work has not documented the use of crowdsourcing in health and medical research. We sought to systematically review the literature to describe the scope of crowdsourcing in health research and to create a taxonomy to characterize past uses of this methodology for health and medical research. Data sources PubMed, Embase, and CINAHL through March 2013. Study eligibility criteria Primary peer-reviewed literature that used crowdsourcing for health research. Study appraisal and synthesis methods Two authors independently screened studies and abstracted data, including demographics of the crowd engaged and approaches to crowdsourcing. Results Twenty-one health-related studies utilizing crowdsourcing met eligibility criteria. Four distinct types of crowdsourcing tasks were identified: problem solving, data processing, surveillance/monitoring, and surveying. These studies collectively engaged a crowd of >136,395 people, yet few studies reported demographics of the crowd. Only one (5 %) reported age, sex, and race statistics, and seven (33 %) reported at least one of these descriptors. Most reports included data on crowdsourcing logistics such as the length of crowdsourcing (n = 18, 86 %) and time to complete crowdsourcing task (n = 15, 71 %). All articles (n = 21, 100 %) reported employing some method for validating or improving the quality of data reported from the crowd. Limitations Gray literature not searched and only a sample of online survey articles included. Conclusions and implications of key findings Utilizing crowdsourcing can improve the quality, cost, and speed of a research project while engaging large segments of the public and creating novel science. Standardized guidelines are needed on crowdsourcing metrics that should be collected and reported to provide clarity and comparability in methods.
Recommendations for mitochondria transfer and transplantation nomenclature and characterization
Intercellular mitochondria transfer is an evolutionarily conserved process in which one cell delivers some of their mitochondria to another cell in the absence of cell division. This process has diverse functions depending on the cell types involved and physiological or disease context. Although mitochondria transfer was first shown to provide metabolic support to acceptor cells, recent studies have revealed diverse functions of mitochondria transfer, including, but not limited to, the maintenance of mitochondria quality of the donor cell and the regulation of tissue homeostasis and remodelling. Many mitochondria-transfer mechanisms have been described using a variety of names, generating confusion about mitochondria transfer biology. Furthermore, several therapeutic approaches involving mitochondria-transfer biology have emerged, including mitochondria transplantation and cellular engineering using isolated mitochondria. In this Consensus Statement, we define relevant terminology and propose a nomenclature framework to describe mitochondria transfer and transplantation as a foundation for further development by the community as this dynamic field of research continues to evolve. This Consensus Statement provides a nomenclature framework and experimental recommendations for studying mitochondrial transfer and transplantation.
Neurological Improvement via Lysophosphatidic Acid Administration in a Rodent Model of Cardiac Arrest-Induced Brain Injury
Lysophosphatidic acid (LPA) serves as a fundamental constituent of phospholipids. While prior studies have shown detrimental effects of LPA in a range of pathological conditions, including brain ischemia, no studies have explored the impact of LPA in the context of cardiac arrest (CA). The aim of this study is to evaluate the effects of the intravenous administration of an LPA species containing oleic acid, LPA (18:1) on the neurological function of rats (male, Sprague Dawley) following 8 min of asphyxial CA. Baseline characteristics, including body weight, surgical procedure time, and vital signs before cardiac arrest, were similar between LPA (18:1)-treated (n = 10) and vehicle-treated (n = 10) groups. There was no statistically significant difference in 24 h survival between the two groups. However, LPA (18:1)-treated rats exhibited significantly improved neurological function at 24 h examination (LPA (18:1), 85.4% ± 3.1 vs. vehicle, 74.0% ± 3.3, p = 0.045). This difference was most apparent in the retention of coordination ability in the LPA (18:1) group (LPA (18:1), 71.9% ± 7.4 vs. vehicle, 25.0% ± 9.1, p < 0.001). Overall, LPA (18:1) administration in post-cardiac arrest rats significantly improved neurological function, especially coordination ability at 24 h after cardiac arrest. LPA (18:1) has the potential to serve as a novel therapeutic in cardiac arrest.
Therapeutic potential of mitochondrial transplantation in modulating immune responses post-cardiac arrest: a narrative review
Background Mitochondrial transplantation (MTx) has emerged as a novel therapeutic strategy, particularly effective in diseases characterized by mitochondrial dysfunction. This review synthesizes current knowledge on MTx, focusing on its role in modulating immune responses and explores its potential in treating post-cardiac arrest syndrome (PCAS). Methods We conducted a comprehensive narrative review of animal and human studies that have investigated the effects of MTx in the context of immunomodulation. This included a review of the immune responses following critical condition such as ischemia reperfusion injury, the impact of MTx on these responses, and the therapeutic potential of MTx in various conditions. Results Recent studies indicate that MTx can modulate complex immune responses and reduce ischemia–reperfusion injury post-CA, suggesting MTx as a novel, potentially more effective approach. The review highlights the role of MTx in immune modulation, its potential synergistic effects with existing treatments such as therapeutic hypothermia, and the need for further research to optimize its application in PCAS. The safety and efficacy of autologous versus allogeneic MTx, particularly in the context of immune reactions, are critical areas for future investigation. Conclusion MTx represents a promising frontier in the treatment of PCAS, offering a novel approach to modulate immune responses and restore cellular energetics. Future research should focus on long-term effects, combination therapies, and personalized medicine approaches to fully harness the potential of MTx in improving patient outcomes in PCAS.