Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
40 result(s) for "Beer, Hans-Dietmar"
Sort by:
The Crosstalk between Nrf2 and Inflammasomes
The Nrf2 (nuclear factor E2-related factor or nuclear factor (erythroid-derived 2)-like 2) transcription factor is a key player in cytoprotection and activated in stress conditions caused by reactive oxygen species (ROS) or electrophiles. Inflammasomes represent central regulators of inflammation. Upon detection of various stress factors, assembly of the inflamasome protein complex results in activation and secretion of proinflammatory cytokines. In addition, inflammasome activation causes pyroptosis, a lytic form of cell death, which supports inflammation. There is growing evidence of a crosstalk between the Nrf2 and inflammasome pathways at different levels. For example, Nrf2 activating compounds inhibit inflammasomes and consequently inflammation. This review summarizes what is known about the complex and predominantly antagonistic relationship of both stress-activated pathways.
The NLRP1 Inflammasome in Human Skin and Beyond
Inflammasomes represent a group of protein complexes that contribute to host defense against pathogens and repair processes upon the induction of inflammation. However, aberrant and chronic inflammasome activation underlies the pathology of numerous common inflammatory diseases. Inflammasome assembly causes activation of the protease caspase-1 which in turn activates proinflammatory cytokines and induces a lytic type of cell death termed pyroptosis. Although NLRP1 (NACHT, leucine-rich repeat and pyrin domain containing 1) was the first inflammasome sensor, described almost 20 years ago, the molecular mechanisms underlying its activation and the resulting downstream events are incompletely understood. This is partially a consequence of the poor conservation of the NLRP1 pathway between human and mice. Moreover, recent evidence demonstrates a complex and multi-stage mechanism of NLRP1 inflammasome activation. In contrast to other inflammasome sensors, NLRP1 possesses protease activity required for proteolytic self-cleavage and activation mediated by the function-to-find domain (FIIND). CARD8 is a second FIIND protein and is expressed in humans but not in mice. In immune cells and AML (acute myeloid leukemia) cells, the anti-cancer drug talabostat induces CARD8 activation and causes caspase-1-dependent pyroptosis. In contrast, in human keratinocytes talabostat induces NLRP1 activation and massive proinflammatory cytokine activation. NLRP1 is regarded as the principal inflammasome sensor in human keratinocytes and UVB radiation induces its activation, which is believed to underlie the induction of sunburn. Moreover, gain-of-function mutations of NLRP1 cause inflammatory skin syndromes and a predisposition for the development of skin cancer. SNPs (single nucleotide polymorphisms) of NLRP1 are associated with several (auto)inflammatory diseases with a major skin phenotype, such as psoriasis or vitiligo. Here, we summarize knowledge about NLRP1 with emphasis on its role in human keratinocytes and skin. Due to its accessibility, pharmacological targeting of NLRP1 activation in epidermal keratinocytes represents a promising strategy for the treatment of the numerous patients suffering from NLRP1-dependent inflammatory skin conditions and cancer.
NLRP3 tyrosine phosphorylation is controlled by protein tyrosine phosphatase PTPN22
Inflammasomes form as the result of the intracellular presence of danger-associated molecular patterns and mediate the release of active IL-1β, which influences a variety of inflammatory responses. Excessive inflammasome activation results in severe inflammatory conditions, but physiological IL-1β secretion is necessary for intestinal homeostasis. Here, we have described a mechanism of NLRP3 inflammasome regulation by tyrosine phosphorylation of NLRP3 at Tyr861. We demonstrated that protein tyrosine phosphatase non-receptor 22 (PTPN22), variants in which are associated with chronic inflammatory disorders, dephosphorylates NLRP3 upon inflammasome induction, allowing efficient NLRP3 activation and subsequent IL-1β release. In murine models, PTPN22 deficiency resulted in pronounced colitis, increased NLRP3 phosphorylation, but reduced levels of mature IL-1β. Conversely, patients with inflammatory bowel disease (IBD) that carried an autoimmunity-associated PTPN22 variant had increased IL-1β levels. Together, our results identify tyrosine phosphorylation as an important regulatory mechanism for NLRP3 that prevents aberrant inflammasome activation.
The Pathways Underlying the Multiple Roles of p62 in Inflammation and Cancer
p62 is a highly conserved, multi-domain, and multi-functional adaptor protein critically involved in several important cellular processes. Via its pronounced domain architecture, p62 binds to numerous interaction partners, thereby influencing key pathways that regulate tissue homeostasis, inflammation, and several common diseases including cancer. Via binding of ubiquitin chains, p62 acts in an anti-inflammatory manner as an adaptor for the auto-, xeno-, and mitophagy-dependent degradation of proteins, pathogens, and mitochondria. Furthermore, p62 is a negative regulator of inflammasome complexes. The transcription factor Nrf2 regulates expression of a bundle of ROS detoxifying genes. p62 activates Nrf2 by interaction with and autophagosomal degradation of the Nrf2 inhibitor Keap1. Moreover, p62 activates mTOR, the central kinase of the mTORC1 sensor complex that controls cell proliferation and differentiation. Through different mechanisms, p62 acts as a positive regulator of the transcription factor NF-κB, a central player in inflammation and cancer development. Therefore, p62 represents not only a cargo receptor for autophagy, but also a central signaling hub, linking several important pro- and anti-inflammatory pathways. This review aims to summarize knowledge about the molecular mechanisms underlying the roles of p62 in health and disease. In particular, different types of tumors are characterized by deregulated levels of p62. The elucidation of how p62 contributes to inflammation and cancer progression at the molecular level might promote the development of novel therapeutic strategies.
High p62 expression suppresses the NLRP1 inflammasome and increases stress resistance in cutaneous SCC cells
NLRP1 is the primary inflammasome sensor in human keratinocytes. Sensing of UVB radiation by NLRP1 is believed to underlie the induction of sunburn. Although constitutive NLRP1 activation causes skin inflammation and predisposes patients to the development of cutaneous SCCs, the NLRP1 pathway is suppressed in established SCCs. Here, we identified high levels of the autophagy receptor p62 in SCC cells lines and SCC tumors. Increased NF-κB activity in SCC cells causes p62 up-regulation. Suppression of p62 expression rescues UVB-induced NLRP1 inflammasome activation in early-stage SCC cells. p62 expression protects SCC cells from cytotoxic drugs, whereas NLRP1 sensitizes them. In summary, we identify p62 as a novel negative regulator of the NLRP1 inflammasome in human cutaneous SCC cells, in which suppression of NLRP1 by increased levels of p62 supports stress resistance of skin cancer cells.
Nrf3 promotes UV-induced keratinocyte apoptosis through suppression of cell adhesion
The transcription factor nuclear factor erythroid 2-related factor 2 (Nrf2) is a key regulator of the cellular stress response, but the biological functions of the related Nrf3 protein are largely unknown. Here we demonstrate a novel pro-apoptotic function of Nrf3 in mouse and human keratinocytes. In response to UV irradiation, Nrf3-deficient keratinocytes were protected from apoptosis in vitro and in vivo. The protective function was also seen under oxidative or hyperosmotic stress conditions, but not when apoptosis was induced by disruption of cell–matrix interactions. Mechanistically, we show that Nrf3-deficient keratinocytes exhibit stronger cell–cell and cell-matrix adhesion, which correlates with higher cell surface integrin levels and enhanced activation of focal adhesion kinase. Nrf3-deficient cells also formed more and larger focal adhesions and exhibited a higher motility. These results suggest that the strong expression of Nrf3 in basal keratinocytes promotes their elimination in response to DNA damage-inducing agents, thereby preventing accumulation of mutated stem and transit amplifying cells in the epidermis.
p62 mRNA suppresses NLRP1 expression in cutaneous SCC cells through miR-34a-5p
The inflammasome sensor NLRP1 is mainly expressed by epithelial cells including keratinocytes of human skin. Germline gain-of-function mutations in NLRP1 cause inflammatory skin syndromes and predispose patients to the development of cutaneous squamous cell carcinomas (cSCCs), a major type of skin cancer originating from keratinocytes. However, expression of NLRP1 is strongly reduced in cSCCs suggesting a complex role of the NLRP1 inflammasome in the development of this type of skin cancer. Suppression of NLRP1 expression in SCC cells is partially caused by an increase in p62 ( SQSTM1 ), a cargo receptor for autophagy-dependent protein degradation. p62 is upregulated in numerous types of cancer and plays key roles in tumor development by activating different pathways. Here, we characterized the molecular mechanisms underlying suppression of NLRP1 expression by p62 in cSCCs. In SCC cells, NLRP1 activation is rescued by a knockdown or knockout of p62 mRNA and, consequently, protein expression, rather than by a knockout of p62 protein expression only. As these experiments suggest a regulation of NLRP1 by the p62 mRNA, we characterized p62 mRNA-regulated gene expression in SCC cells through RNA sequencing. In addition to mRNAs, we identified several differentially regulated microRNAs (miRs), including miR-34a-5p. These short non-coding RNAs regulate the stability or translation of mRNAs in a dynamic manner and a single miR can target multiple mRNAs. miR-34a-5p is an established tumor suppressor in different types of cancer and its expression is also downregulated in cSCCs. Although miR-34a-5p seems to bind neither p62 nor NLRP1 mRNA directly, it increases NLRP1 expression, most likely through an indirect and complex mechanism, which occurs at the RNA level. In summary, our findings revealed a novel pathway regulating suppression of the inflammasome sensor NLRP1 in SCC cells by p62, which occurs at the mRNA level and is mediated by miRs, including the tumor suppressive miR-34a-5p. Therefore, a pharmacological increase in miR-34a expression represents a treatment option for cSCC patients that allows not only to target know proteins regulated by miR-34a but also a reconstitution of NLRP1 expression.
Caspase-1 Activity Is Required for UVB-Induced Apoptosis of Human Keratinocytes
Caspase-1 has a crucial role in innate immunity as the protease activates the proinflammatory cytokine prointerleukin(IL)-1β. Furthermore, caspase-1 induces pyroptosis, a lytic form of cell death that supports inflammation. Activation of caspase-1 occurs in multi-protein complexes termed inflammasomes, which assemble upon sensing of stress signals. In the skin and in skin-derived keratinocytes, UVB irradiation induces inflammasome-dependent IL-1 secretion and sunburn. Here we present evidence that caspase-1 and caspase-4 are required for UVB-induced apoptosis. In UVB-irradiated human primary keratinocytes, apoptosis occurs significantly later than inflammasome activation but depends on caspase-1 activity. However, it proceeds independently of inflammasome activation. By a proteomics approach, we identified the antiapoptotic Bap31 as a putative caspase-1 substrate. Caspase-1-dependent apoptosis is possibly a recent process in evolution as it was not detected in mice. These results suggest a protective role of caspase-1 in keratinocytes during UVB-induced skin cancer development through the induction of apoptosis.
The mitochondrial DNA common deletion as a potential biomarker of cancer-associated fibroblasts from skin basal and squamous cell carcinomas
Cancer-associated fibroblasts (CAFs) are components of the tumor microenvironment and represent appealing therapeutic targets for translational studies. Conventional protein-based biomarkers for CAFs have been reported to be limited in their specificity, rendering difficult the identification of CAFs from normal fibroblasts (NFs) in clinical samples and dampening the development of CAF-targeted therapies to treat cancer. In this study, we propose the mitochondrial RNA and the mitochondrial DNA (mtDNA) common deletion (CD) as novel indicators of CAF identity. We found that cancer-activation correlated with decreased levels of the mtDNA CD, a condition not due to altered mitochondria count or cellular redox state, but potentially linked to the generalized overexpression of mtDNA maintenance genes in CAFs. Decreased mtDNA CD content in CAFs was associated with moderate to strong overexpression of mtDNA-encoded genes and to slightly improved mitochondrial function. We identified similar patterns of upregulation of mtDNA-encoded genes in independent single-cell RNA seq data obtained from squamous cell carcinoma (SCC) patients. By using the identified nucleic acids-based indicators, identification of CAFs from NFs could be improved, leading to potential therapeutic benefits in advancing translational and clinical studies.
Antagonism of interferon signaling by fibroblast growth factors promotes viral replication
Fibroblast growth factors (FGFs) play key roles in the pathogenesis of different human diseases, but the cross‐talk between FGFs and other cytokines remains largely unexplored. We identified an unexpected antagonistic effect of FGFs on the interferon (IFN) signaling pathway. Genetic or pharmacological inhibition of FGF receptor signaling in keratinocytes promoted the expression of interferon‐stimulated genes (ISG) and proteins in vitro and in vivo . Conversely, FGF7 or FGF10 treatment of keratinocytes suppressed ISG expression under homeostatic conditions and in response to IFN or poly(I:C) treatment. FGF‐mediated ISG suppression was independent of IFN receptors, occurred at the transcriptional level, and required FGF receptor kinase and proteasomal activity. It is not restricted to keratinocytes and functionally relevant, since FGFs promoted the replication of herpes simplex virus I (HSV‐1), lymphocytic choriomeningitis virus, and Zika virus. Most importantly, inhibition of FGFR signaling blocked HSV‐1 replication in cultured human keratinocytes and in mice. These results suggest the use of FGFR kinase inhibitors for the treatment of viral infections. Synopsis The study demonstrates that fibroblast growth factors suppress the cellular interferon response and thereby promote viral replication. Inhibition of FGF signaling has the opposite effect, suggesting the use of FGF receptor inhibitors as an antiviral defense strategy. FGF signaling suppresses the basal expression of interferon response genes in keratinocytes and intestinal epithelial cells. The effect of FGF signaling on the interferon response is mediated via the FGF receptor kinase and occurs at the transcriptional level. FGF signaling suppresses the interferon response upon treatment of cells with interferons, interferon‐inducers, and upon viral infection. FGF signaling promotes replication of Herpes simplex virus I, lymphocytic choriomeningitis virus and Zika virus in keratinocytes. FGF receptor inhibition has strong antiviral activities in keratinocytes. Graphical Abstract The study demonstrates that fibroblast growth factors suppress the cellular interferon response and thereby promote viral replication. Inhibition of FGF signaling has the opposite effect, suggesting the use of FGF receptor inhibitors as an antiviral defense strategy.