Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
59 result(s) for "Begemann, Matthias"
Sort by:
Identification of transcription factor binding sites using ATAC-seq
Transposase-Accessible Chromatin followed by sequencing (ATAC-seq) is a simple protocol for detection of open chromatin. Computational footprinting, the search for regions with depletion of cleavage events due to transcription factor binding, is poorly understood for ATAC-seq. We propose the first footprinting method considering ATAC-seq protocol artifacts. HINT-ATAC uses a position dependency model to learn the cleavage preferences of the transposase. We observe strand-specific cleavage patterns around transcription factor binding sites, which are determined by local nucleosome architecture. By incorporating all these biases, HINT-ATAC is able to significantly outperform competing methods in the prediction of transcription factor binding sites with footprints.
Biallelic PADI6 variants cause multilocus imprinting disturbances and miscarriages in the same family
The term multilocus imprinting disturbance (MLID) describes the aberrant methylation of multiple imprinted loci in the genome, and MLID occurs in patients suffering from imprinting disorder carrying methylation defects. First data indicate that functional variants in factors expressed from both the fetal as well as the maternal genome cause MLID. Molecular changes in such genes of the maternal genome are called maternal effect variants, they affect members of the subcortical maternal complex (SCMC) in the oocyte which plays an important role during early embryonic development. Whereas the contribution of variants in the SCMC genes NLRP2, NLRP5, NLRP7, and KHDC3L to the etiology of reproductive failure and aberrant imprinting is widely accepted, the involvement of PADI6 variants in the formation of MLID is in discussion. We now report on the identification of biallelic variants in a woman suffering from different miscarriages and giving birth to two children with MLID. Thereby the role of PADI6 in maintaining the proper imprinting status during early development is confirmed. Thus, PADI6 variants do not only cause (early) pregnancy losses, but maternal effect variants in this gene cause the same spectrum of pregnancy outcomes as variants in other SCMC encoding genes, including chromosomal aberrations and disturbed imprinting. The identification of maternal effect variants requires genetic and reproductive counseling as carriers of these variants are at high risks for reproductive failure.
Paternally Inherited IGF2 Mutation and Growth Restriction
Analysis of a family, some of the members of which have marked growth restriction, showed that the affected members carry a variant of IGF2 . It would therefore appear that IGF-II affects prenatal and postnatal growth. IGF-II is a peptide hormone and a member of the IGF family. IGF-I and IGF-II regulate somatic growth and cell proliferation by binding and activating the IGF-I receptor (IGF-IR). Although both are expressed during fetal development, IGF-II is thought to have a major effect on embryonic growth, with IGF-I becoming predominant after birth. 1 , 2 Studies of mice have supported a major role for the IGF receptor pathway in growth: knockout of Igf1 , Igf2 , or Igf1r results in growth retardation, whereas overexpression of Igf2 results in overgrowth. 3 , 4 In humans, mutations in IGF1 and in IGF1R have been implicated . . .
Mutational constraint analysis workflow for overlapping short open reading frames and genomic neighbors
Understanding the dark genome is a priority task following the complete sequencing of the human genome. Short open reading frames (sORFs) are a group of largely unexplored elements of the dark genome with the potential for being translated into microproteins. The definitive number of coding and regulatory sORFs is not known, however they could account for up to 1–2% of the human genome. This corresponds to an order of magnitude in the range of canonical coding genes. For a few sORFs a clinical relevance has already been demonstrated, but for the majority of potential sORFs the biological function remains unclear. A major limitation in predicting their disease relevance using large-scale genomic data is the fact that no population-level constraint metrics for genetic variants in sORFs are yet available. To overcome this, we used the recently released gnomAD 4.0 dataset and analyzed the constraint of a consensus set of sORFs and their genomic neighbors. We demonstrate that sORFs are mostly embedded into a moderately constrained genomic context, but within the gencode dataset we identified a subset of highly constrained sORFs comparable to highly constrained canonical genes.
CNVizard—a lightweight streamlit application for an interactive analysis of copy number variants
Background Methods to call, analyze and visualize copy number variations (CNVs) from massive parallel sequencing data have been widely adopted in clinical practice and genetic research. To enable a streamlined analysis of CNV data, comprehensive annotations and good visualizations are indispensable. The ability to detect single exon CNVs is another important feature for genetic testing. Nonetheless, most available open-source tools come with limitations in at least one of these areas. One additional drawback is that available tools deliver data in an unstructured and static format which requires subsequent visualization and formatting efforts. Results Here we present CNVizard, an interactive Streamlit app allowing a comprehensive visualization of CNVkit data. Furthermore, combining CNVizard with the CNVand pipeline allows the annotation and visualization of CNV or SV VCF files from any CNV caller. Conclusion CNVizard, in combination with CNVand, enables the comprehensive and streamlined analysis of short- and long-read sequencing data and provide an intuitive webapp-like experience enabling an interactive visualization of CNV data.
DEGS1-associated aberrant sphingolipid metabolism impairs nervous system function in humans
Sphingolipids are important components of cellular membranes and functionally associated with fundamental processes such as cell differentiation, neuronal signaling, and myelin sheath formation. Defects in the synthesis or degradation of sphingolipids leads to various neurological pathologies; however, the entire spectrum of sphingolipid metabolism disorders remains elusive. A combined approach of genomics and lipidomics was applied to identify and characterize a human sphingolipid metabolism disorder. By whole-exome sequencing in a patient with a multisystem neurological disorder of both the central and peripheral nervous systems, we identified a homozygous p.Ala280Val variant in DEGS1, which catalyzes the last step in the ceramide synthesis pathway. The blood sphingolipid profile in the patient showed a significant increase in dihydro sphingolipid species that was further recapitulated in patient-derived fibroblasts, in CRISPR/Cas9-derived DEGS1-knockout cells, and by pharmacological inhibition of DEGS1. The enzymatic activity in patient fibroblasts was reduced by 80% compared with wild-type cells, which was in line with a reduced expression of mutant DEGS1 protein. Moreover, an atypical and potentially neurotoxic sphingosine isomer was identified in patient plasma and in cells expressing mutant DEGS1. We report DEGS1 dysfunction as the cause of a sphingolipid disorder with hypomyelination and degeneration of both the central and peripheral nervous systems. Not applicable. Seventh Framework Program of the European Commission, Swiss National Foundation, Rare Disease Initiative Zurich.
Maternal heterozygous NLRP7 variant results in recurrent reproductive failure and imprinting disturbances in the offspring
It has been shown previously that homozygous and compound-heterozygous variants affecting protein function in the human NLRP genes impact reproduction and/or fetal imprinting patterns. These variants represent so-called 'maternal effect mutations', that is, although female variant carriers are healthy, they are at risk of reproductive failure, and their offspring may develop aberrant methylation and imprinting disorders. In contrast, the relevance to reproductive failure of maternal heterozygous NLRP7 variants remains unclear. The present report describes the identification of a heterozygous NLRP7 variant in a healthy 28-year-old woman with a history of recurrent reproductive failure, and the molecular findings in two of the deceased offspring. Next-generation sequencing (NGS) for NLRP variants was performed. In the tissues of two offspring (one fetus; one deceased premature neonate) methylation of imprinted loci was tested using methylation-specific assays. Both pregnancies had been characterized by the presence of elevated human chorionic gonadotropin (hCG) levels and ovarian cysts. In the mother, a heterozygous nonsense 2-bp deletion in exon 5 of the NLRP7 gene was identified (NM_001127255.1:c.2010_2011del, p.(Phe671Glnfs*18)). In the two investigated offspring, heterogeneous aberrant methylation patterns were detected at imprinted loci. The present data support the hypothesis that heterozygous NLRP7 variants contribute to reproductive wastage, and that these variants represent autosomal dominant maternal effect variants which lead to aberrant imprinting marks in the offspring. Specific screening and close prenatal monitoring of NLRP7 variant carriers is proposed. Egg donation might facilitate successful pregnancy in heterozygous NLRP7 variant carriers.
DNA methylation changes during long-term in vitro cell culture are caused by epigenetic drift
Culture expansion of primary cells evokes highly reproducible DNA methylation (DNAm) changes. We have identified CG dinucleotides (CpGs) that become continuously hyper- or hypomethylated during long-term culture of mesenchymal stem cells (MSCs) and other cell types. Bisulfite barcoded amplicon sequencing (BBA-seq) demonstrated that DNAm patterns of neighboring CpGs become more complex without evidence of continuous pattern development and without association to oligoclonal subpopulations. Circularized chromatin conformation capture (4C) revealed reproducible changes in nuclear organization between early and late passages, while there was no enriched interaction with other genomic regions that also harbor culture-associated DNAm changes. Chromatin immunoprecipitation of CTCF did not show significant differences during long-term culture of MSCs, however culture-associated hypermethylation was enriched at CTCF binding sites and hypomethylated CpGs were devoid of CTCF. Taken together, our results support the notion that DNAm changes during culture-expansion are not directly regulated by a targeted mechanism but rather resemble epigenetic drift.Julia Franzen et al. investigate if changes in DNA methylation at specific genetic loci during cell culture expansion are due to a specific mechanism or gradual deregulation of an epigenetic state. Their results suggest that changes in CpG methylation are due to indirect epigenetic drift, rather than a consequence of targeting by DNA methyltransferases.
EMQN best practice guidelines for the molecular genetic testing and reporting of chromosome 11p15 imprinting disorders: Silver–Russell and Beckwith–Wiedemann syndrome
Molecular genetic testing for the 11p15-associated imprinting disorders Silver-Russell and Beckwith-Wiedemann syndrome (SRS, BWS) is challenging because of the molecular heterogeneity and complexity of the affected imprinted regions. With the growing knowledge on the molecular basis of these disorders and the demand for molecular testing, it turned out that there is an urgent need for a standardized molecular diagnostic testing and reporting strategy. Based on the results from the first external pilot quality assessment schemes organized by the European Molecular Quality Network (EMQN) in 2014 and in context with activities of the European Network of Imprinting Disorders (EUCID.net) towards a consensus in diagnostics and management of SRS and BWS, best practice guidelines have now been developed. Members of institutions working in the field of SRS and BWS diagnostics were invited to comment, and in the light of their feedback amendments were made. The final document was ratified in the course of an EMQN best practice guideline meeting and is in accordance with the general SRS and BWS consensus guidelines, which are in preparation. These guidelines are based on the knowledge acquired from peer-reviewed and published data, as well as observations of the authors in their practice. However, these guidelines can only provide a snapshot of current knowledge at the time of manuscript submission and readers are advised to keep up with the literature.
One test for all: whole exome sequencing significantly improves the diagnostic yield in growth retarded patients referred for molecular testing for Silver–Russell syndrome
Background Silver-Russell syndrome (SRS) is an imprinting disorder which is characterised by severe primordial growth retardation, relative macrocephaly and a typical facial gestalt. The clinical heterogeneity of SRS is reflected by a broad spectrum of molecular changes with hypomethylation in 11p15 and maternal uniparental disomy of chromosome 7 (upd(7)mat) as the most frequent findings. Monogenetic causes are rare, but a clinical overlap with numerous other disorders has been reported. However, a comprehensive overview on the contribution of mutations in differential diagnostic genes to phenotypes reminiscent to SRS is missing due to the lack of appropriate tests. With the implementation of next generation sequencing (NGS) tools this limitation can now be circumvented. Main body We analysed 75 patients referred for molecular testing for SRS by a NGS-based multigene panel, whole exome sequencing (WES), and trio-based WES. In 21/75 patients a disease-causing variant could be identified among them variants in known SRS genes ( IGF2, PLAG1, HMGA2 ). Several patients carried variants in genes which have not yet been considered as differential diagnoses of SRS. Conclusions WES approaches significantly increase the diagnostic yield in patients referred for SRS testing. Several of the identified monogenetic disorders have a major impact on clinical management and genetic counseling.