Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Language
      Language
      Clear All
      Language
  • Subject
      Subject
      Clear All
      Subject
  • Item Type
      Item Type
      Clear All
      Item Type
  • Discipline
      Discipline
      Clear All
      Discipline
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
91 result(s) for "Begley, David J"
Sort by:
Immunologic Privilege in the Central Nervous System and the Blood–Brain Barrier
The brain is in many ways an immunologically and pharmacologically privileged site. The blood–brain barrier (BBB) of the cerebrovascular endothelium and its participation in the complex structure of the neurovascular unit (NVU) restrict access of immune cells and immune mediators to the central nervous system (CNS). In pathologic conditions, very well-organized immunologic responses can develop within the CNS, raising important questions about the real nature and the intrinsic and extrinsic regulation of this immune privilege. We assess the interactions of immune cells and immune mediators with the BBB and NVU in neurologic disease, cerebrovascular disease, and intracerebral tumors. The goals of this review are to outline key scientific advances and the status of the science central to both the neuroinflammation and CNS barriers fields, and highlight the opportunities and priorities in advancing brain barriers research in the context of the larger immunology and neuroscience disciplines. This review article was developed from reports presented at the 2011 Annual Blood-Brain Barrier Consortium Meeting.
Cyclodextrin alleviates neuronal storage of cholesterol in Niemann-Pick C disease without evidence of detectable blood–brain barrier permeability
Niemann-Pick type C disease is an inherited autosomal recessive neurodegenerative disorder characterised by the accumulation of unesterified cholesterol and sphingolipids within the endosomal/lysosomal compartments. It has been observed that the administration of hydroxypropyl-β-cyclodextrin (HPBCD) delays onset of clinical symptoms and reduces accumulation of cholesterol and gangliosides within neuronal cells. It was assumed that HPBCD exerts its action by readily entering the CNS and directly interacting with neurones and other brain cells to facilitate removal of stored cholesterol from the late endosomal/lysosomal compartment. Here, we present evidence that refutes this hypothesis. We use two well established techniques for accurately measuring brain uptake of solutes from blood and show that there is no significant crossing of HPBCD into the brain. The two techniques are brain in situ perfusion and intraperitoneal injection followed by multi-time-point regression analysis. Neither study demonstrates significant, time-dependent uptake of HPBCD in either adult or neonatal mice. However, the volume of distribution available to HPBCD (0.113 ± 0.010 ml/g) exceeds the accepted values for plasma and vascular volume of the brain. In fact, it is nearly three times larger than that for sucrose (0.039 ± 0.006 ml/g). We propose that this indicates cell surface binding of HPBCD to the endothelium of the cerebral vasculature and may provide a mechanism for the mobilisation and clearance of cholesterol from the CNS.
ABC Transporters and the Blood-Brain Barrier
The blood-brain barrier (BBB) and the blood-cerebrospinal fluid barrier (BCSFB) form a very effective barrier to the free diffusion of many polar solutes into the brain. Many metabolites that are polar have their brain entry facilitated by specific inwardly-directed transport mechanisms. In general the more lipid soluble a molecule or drug is, the more readily it will tend to partition into brain tissue. However, a very significant number of lipid soluble molecules, among them many useful therapeutic drugs have lower brain permeability than would be predicted from a determination of their lipid solubility. These molecules are substrates for the ABC efflux transporters which are present in the BBB and BCSB and the activity of these transporters very efficiently removes the drug from the CNS, thus limiting brain uptake. Pglycoprotein (Pgp) was the first of these ABC transporters to be described, followed by the multidrug resistanceassociated proteins (MRP) and more recently breast cancer resistance protein (BCRP). All are expressed in the BBB and BCSFB and combine to reduce the brain penetration of many drugs. This phenomenon of \"multidrug resistance\" is a major hurdle when it comes to the delivery of therapeutics to the brain, not to mention the problem of cancer chemotherapy in general. Therefore, the development of strategies for bypassing the influence of these ABC transporters and for the design of effective drugs that are not substrates and the development of inhibitors for the ABC transporters becomes a high imperative for the pharmaceutical industry.
Lysosomal Storage Diseases and the Blood-Brain Barrier
The blood-brain barrier becomes a crucial issue in neuronopathic lysosomal storage diseases for three reasons. Firstly, the function of the blood-brain barrier may be compromised in many of the lysosomal storage diseases and this barrier dysfunction may contribute to the neuropathology seen in the diseases and accelerate cell death. Secondly, the substrate reduction therapies, which successfully reduce peripheral lysosomal storage, because of the blood-brain barrier may not have as free an access to brain cells as they do to peripheral cells. And thirdly, enzyme replacement therapy appears to have little access to the central nervous system as the mannose and mannose-6-phosphate receptors involved in their cellular uptake and transport to the lysosome do not appear to be expressed at the adult blood-brain barrier. This review will discuss in detail these issues and their context in the development of new therapeutic strategies.
Potential of Immobilized Artificial Membranes for Predicting Drug Penetration Across the Blood−Brain Barrier
The present study evaluates immobilized artificial membrane (IAM) chromatography for predicting drug permeability across the blood-brain barrier (BBB) and outlines the potential and limitations of IAMs as a predictive tool by comparison with conventional methods based on octanol/water partitioning and octadecylsilane (ODS)-HPLC. IAM-and ODS-HPLC capacity factors were determined in order to derive the hydrophobic indices log kIAM nad log kW for two sets of compounds ranging from very lipid soluble (steroids) to more hydrophilic agents (biogenic amines). The uptake of the compounds across the in vivo BBB expressed as brain uptake index (BUI) has been correlated with these HPLC capacity factors as well as octanol/ water partition (ClogP) and distribution coefficients (log D7.4). For both test groups log kIAM correlates significantly with the respective log BUI of the drug (r2 = 0.729 and 0.747, p < 0.05), whereas with log kW, log D7.4 and ClogP there is only a correlation for the group of steroids (r2 = 0.789, 0.659 and 0.809, p < 0.05) but not for the group of biogenic amines. There is a good correlation between log kIAM and log kW. ClogP or log D7.4 for the group of steroids (r2 = 0.945.0867 and 0.974, p < 0.01) but not for the biogenic amines. All physico-chemical descriptors examined in this study equally well describe brain uptake of lipophilic compounds, while log kIAM is superior over log D7.4, ClogP and log kW when polar and ionizable compounds are included. The predictive value of IAMs, combined with the power of HPLC holds thus great promise for the selection process of drug candidates with high brain penetration.
Direct Evidence That Polysorbate-80-Coated Poly(Butylcyanoacrylate) Nanoparticles Deliver Drugs to the CNS via Specific Mechanisms Requiring Prior Binding of Drug to the Nanoparticles
[corrected] It has recently been suggested that the poly(butylcyanoacrylate) (PBCA) nanoparticle drug delivery system has a generalized toxic effect on the blood-brain barrier (BBB) (8) and that this effect forms the basis of an apparent enhanced drug delivery to the brain. The purpose of this study is to explore more fully the mechanism by which PBCA nanoparticles can deliver drugs to the brain. Both in vivo and in vitro methods have been applied to examine the possible toxic effects of PBCA nanoparticles and polysorbate-80 on cerebral endothelial cells. Human, bovine, and rat models have been used in this study. In bovine primary cerebral endothelial cells, nontoxic levels of PBCA particles and polysorbate-80 did not increase paracellular transport of sucrose and inulin in the monolayers. Electron microscopic studies confirm cell viability. In vivo studies using the antinociceptive opioid peptide dalargin showed that both empty PBCA nanoparticles and polysorbate-80 did not allow dalargin to enter the brain in quantities sufficient to cause antinociception. Only dalargin preadsorbed to PBCA nanoparticles was able to induce an antinociceptive effect in the animals. At concentrations of PBCA nanoparticles and polysorbate-80 that achieve significant drug delivery to the brain, there is little in vivo or in vitro evidence to suggest that a generalized toxic effect on the BBB is the primary mechanism for drug delivery to the brain. The fact that dalargin has to be preadsorbed onto nanoparticles before it is effective in inducing antinociception suggests specific mechanisms of delivery to the CNS rather than a simple disruption of the BBB allowing a diffusional drug entry.
LIPIDS IN BLOOD–BRAIN BARRIER MODELS IN VITRO II: INFLUENCE OF GLIAL CELLS ON LIPID CLASSES AND LIPID FATTY ACIDS
Lipids of brain tissue and brain microvascular endothelial cells contain high proportions of long-chain polyunsaturated fatty acids (long PUFAs). The blood–brain barrier (BBB) is formed by the brain endothelial cells under the inductive influence of brain cells, especially perivascular glia, and coculture of endothelial cells and glial cells has been used to examine this induction. The objective of this study was to investigate whether C6 glioma cells are able to influence the lipid composition and shift the fatty acid (FA) patterns of the BBB model cell lines RBE4 and ECV304 toward the in vivo situation. Lipid classes of the three cell lines were analyzed by thin-layer chromatography and lipid FA patterns by high-performance liquid chromatography. Only ECV304 cells showed altered lipid composition in coculture with C6 cells. The fractions of triglycerides and cholesteryl esters (depending on the support filter) were about twice as high in coculture as when the cells were grown alone. Triglyceride fractions reached 13 to 15% of total lipids in coculture. The three cell lines showed an increase in the percentage of long PUFAs with respect to unsaturated FAs, mainly because of an increase in the percentages of arachidonic acid, all cis-7,10,13,16-docosatetraenoic acid, and all cis-7,10,13,16,19-docosapentaenoic acid. It is concluded that glioma C6 cells are able to induce a more in vivo–like FA pattern in BBB cell culture models. However, changes were not significant for the individual PUFAs, and their levels did not reach in vivo values.
LIPIDS IN BLOOD–BRAIN BARRIER MODELS IN VITRO I: THIN-LAYER CHROMATOGRAPHY AND HIGH-PERFORMANCE LIQUID CHROMATOGRAPHY FOR THE ANALYSIS OF LIPID CLASSES AND LONG-CHAIN POLYUNSATURATED FATTY ACIDS
The objectives of this study were to optimize a sensitive high-performance liquid chromatography (HPLC) method for fatty acid (FA) analysis for the quantification of polyunsaturated FAs (PUFAs) in cell lipid extracts and to analyze the lipid and FA patterns of three cell lines used in blood–brain barrier (BBB) models: RBE4, ECV304, and C6. Thin-layer chromatographic analysis revealed differences in the phosphatidylcholine–phosphatidylethanolamine (PC:PE) ratios and the triglyceride (TG) content. The PC:PE ratio was <1 for RBE4 cells but >1 for ECV304 and C6 cells. ECV304 cells displayed up to 9% TG depending on culture time, whereas the other cell lines contained about 1% TG. The percentages of docosahexaenoic acid were 9.4 ± 1.7% of the unsaturated FAs in RBE4 cells (n = 5; 4 d in culture; 9.9% after 10 d), 8.1 ± 2.0% in ECV304 cells (n = 11; 10 to 14 d), and 6.7 ± 0.6% in C6 cells (n = 6; 10 to 14 d) and were close to the published values for rat brain microvascular endothelium. The percentage of arachidonic acid (C20:4) was about half that in vivo. ECV304 cells contained the highest fraction of C20:4, 17.8 ± 2.2%; RBE4 cells contained 11.6 ± 2.4%; and C6 cells 15.8 ± 1.9%. It is concluded that a sensitive HPLC method for FAs is now optimized for the analysis of long-chain PUFAs. The results provide a useful framework for studies on the effects of lipid modulation and give reference information for the development of further BBB models.