Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
8,361 result(s) for "Begum, A."
Sort by:
A Study on Different Deep Learning Algorithms Used in Deep Neural Nets: MLP SOM and DBN
Deep learning is a wildly popular topic in machine learning and is structured as a series of nonlinear layers that learns various levels of data representations. Deep learning employs numerous layers to represent data abstractions to implement various computer models. Deep learning approaches like generative, discriminative models and model transfer have transformed information processing. This article proposes a comprehensive review of various deep learning algorithms Multi layer perception, Self-organizing map and deep belief networks algorithms. It first briefly introduces historical and recent state-of-the-art reviews with suitable architectures and implementation steps. Moreover, the various applications of those algorithms in various fields such as wireless networks, Adhoc networks, Mobile ad-hoc and vehicular ad-hoc networks, speech recognition engineering, medical applications, natural language processing, material science and remote sensing applications, etc. are classified.
Green Synthesis and Characterisation of Silver Nanoparticles Using Cassia tora Seed Extract and Investigation of Antibacterial Potential
Nanoparticle research is fascinating and getting hold of consequences due to the wide variety of applications in the biomedical field. Green synthesis of nanoparticles is a cost-effective and eco-friendly approach. It can be synthesised using fungi, algae, plant, yeast, bacteria, microbial enzymes etc. Our current research study focuses on the green synthesis of silver nanoparticles using seed extract of Cassia tora. The colour change from yellow to red colour confirms the formation of silver nanoparticles. The synthesised silver nanoparticles were characterised by Ultraviolet–Visible spectroscopy, Fourier-transform infrared (FTIR), X-ray diffraction analysis (XRD), Scanning Electron Microscopy (SEM) and antibacterial efficacy against three different strains were analysed. The surface plasmon resonance of synthesised AgNPs using Cassia tora seed extract shows maximum absorption peak at 423 nm in UV–visible spectroscopy. X-ray diffraction displays the crystalline nature of synthesised AgNPs and they exhibited four distinct peaks at 36.69°, 42.92°, 63.27° and 76.46°. The particle size of synthesised AgNPs observed through SEM was found to be 55.80 nm, 58.97 nm, 61.06 nm, 63.26 nm and 64.80 nm. S.aureus exhibited maximum zone of inhibition of 12 mm and 13 mm when treated with 25 and 50 μl of the synthesised nanoparticles. Thus, the green synthesised silver nanoparticle using Cassia tora seed extract proved to possess strong anti-bacterial activity.
Short-Term Forecasting of Total Energy Consumption for India-A Black Box Based Approach
Continual energy availability is one of the prime inputs requisite for the persistent growth of any country. This becomes even more important for a country like India, which is one of the rapidly developing economies. Therefore electrical energy’s short-term demand forecasting is an essential step in the process of energy planning. The intent of this article is to predict the Total Electricity Consumption (TEC) in industry, agriculture, domestic, commercial, traction railways and other sectors of India for 2030. The methodology includes the familiar black-box approaches for forecasting namely multiple linear regression (MLR), simple regression model (SRM) along with correlation, exponential smoothing, Holt’s, Brown’s and expert model with the input variables population, GDP and GDP per capita using the software used are IBM SPSS Statistics 20 and Microsoft Excel 1997–2003 Worksheet. The input factors namely GDP, population and GDP per capita were taken into consideration. Analyses were also carried out to find the important variables influencing the energy consumption pattern. Several models such as Brown’s model, Holt’s model, Expert model and damped trend model were analysed. The TEC for the years 2019, 2024 and 2030 were forecasted to be 1,162,453 MW, 1,442,410 MW and 1,778,358 MW respectively. When compared with Population, GDP per capita, it is concluded that GDP foresees TEC better. The forecasting of total electricity consumption for the year 2030–2031 for India is found to be 1834349 MW. Therefore energy planning of a country relies heavily upon precise proper demand forecasting. Precise forecasting is one of the major challenges to manage in the energy sector of any nation. Moreover forecasts are important for the effective formulation of energy laws and policies in order to conserve the natural resources, protect the ecosystem, promote the nation’s economy and protect the health and safety of the society.
Resistance Pattern and Molecular Characterization of Enterotoxigenic Escherichia coli (ETEC) Strains Isolated in Bangladesh
Enterotoxigenic Escherichia coli (ETEC) is a common cause of bacterial infection leading to acute watery diarrhea in infants and young children as well as in travellers to ETEC endemic countries. Ciprofloxacin is a broad-spectrum antimicrobial agent nowadays used for the treatment of diarrhea. This study aimed to characterize ciprofloxacin resistant ETEC strains isolated from diarrheal patients in Bangladesh. A total of 8580 stool specimens from diarrheal patients attending the icddr,b Dhaka hospital was screened for ETEC between 2005 and 2009. PCR and Ganglioside GM1- Enzyme Linked Immuno sorbent Assay (ELISA) was used for detection of Heat labile (LT) and Heat stable (ST) toxins of ETEC. Antimicrobial susceptibilities for commonly used antibiotics and the minimum inhibitory concentration (MIC) of nalidixic acid, ciprofloxacin and azithromycin were examined. DNA sequencing of representative ciprofloxacin resistant strains was performed to analyze mutations of the quinolone resistance-determining region of gyrA, gyrB, parC and parE. PCR was used for the detection of qnr, a plasmid mediated ciprofloxacin resistance gene. Clonal variations among ciprofloxacin resistant (CipR) and ciprofloxacin susceptible (CipS) strains were determined by Pulsed-field gel electrophoresis (PFGE). Among 1067 (12%) ETEC isolates identified, 42% produced LT/ST, 28% ST and 30% LT alone. Forty nine percent (n = 523) of the ETEC strains expressed one or more of the 13 tested colonization factors (CFs) as determined by dot blot immunoassay. Antibiotic resistance of the ETEC strains was observed as follows: ampicillin 66%, azithromycin 27%, ciprofloxacin 27%, ceftriazone 13%, cotrimaxazole 46%, doxycycline 44%, erythromycin 96%, nalidixic acid 83%, norfloxacin 27%, streptomycin 48% and tetracycline 42%. Resistance to ciprofloxacin increased from 13% in 2005 to 34% in 2009. None of the strains was resistant to mecillinam. The MIC of the nalidixic acid and ciprofloxacin of representative CipR strains were 256 μg/ml and 32μg/ml respectively. A single mutation (Ser83-Leu) in gyrA was observed in the nalidixic acid resistant ETEC strains. In contrast, double mutation in gyrA (Ser83-Leu, Asp87-Asn) and a single mutation in parC (Glu84-Ly) were found in ciprofloxacin resistant strains. Mutation of gyrB was not found in either the nalidixic acid or ciprofloxacin resistant strains. None of the ciprofloxacin resistant strains was found to be positive for the qnr gene. Diverse clones were identified from all ciprofloxacin resistant strains by PFGE analysis in both CF positive and CF negative ETEC strains. Emergence of ciprofloxacin resistant ETEC strains results in a major challenge in current treatment strategies of ETEC diarrhea.
Mental health status of informal waste workers during the COVID-19 pandemic in Bangladesh
The deadliest coronavirus disease 2019 (COVID-19) is taking thousands of lives worldwide and presents an extraordinary challenge to mental resilience. This study assesses mental health status during the COVID-19 pandemic and its associated factors among informal waste workers in Bangladesh. A cross-sectional survey was conducted in June 2020 among 176 informal waste workers selected from nine municipalities and one city corporation in Bangladesh. General Health Questionnaire (GHQ-12) was used to assess respondents’ mental health. The study found that 80.6% of the individuals were suffering from psychological distress; 67.6% reported anxiety and depression, 92.6% reported social dysfunction, and 19.9% reported loss of confidence. The likelihood of psychological distress (Risk ratio [RR]: 1.23, 95% confidence interval [CI]: 1.02–1.48) was significantly higher for female than male. Multiple COVID-19 symptoms of the family members (RR: 1.20, 95% CI: 1.03–1.41), unawareness about COVID-19 infected neighbor (RR: 1.21, 95% CI: 1.04–1.41), income reduction (RR: 1.60, 95% CI: 1.06–2.41) and daily household meal reduction (RR: 1.34; 95% CI: 1.03–1.73) were also found to be associated with psychological distress. These identified factors should be considered in policy-making and support programs for the informal waste workers to manage the pandemic situation as well as combating COVID-19 related psychological challenges.
Chromatin remodeller SMARCA4 recruits topoisomerase 1 and suppresses transcription-associated genomic instability
Topoisomerase 1, an enzyme that relieves superhelical tension, is implicated in transcription-associated mutagenesis and genome instability-associated with neurodegenerative diseases as well as activation-induced cytidine deaminase. From proteomic analysis of TOP1-associated proteins, we identify SMARCA4, an ATP-dependent chromatin remodeller; FACT, a histone chaperone; and H3K4me3, a transcriptionally active chromatin marker. Here we show that SMARCA4 knockdown in a B-cell line decreases TOP1 recruitment to chromatin, and leads to increases in Igh/c-Myc chromosomal translocations, variable and switch region mutations and negative superhelicity, all of which are also observed in response to TOP1 knockdown. In contrast, FACT knockdown inhibits association of TOP1 with H3K4me3, and severely reduces DNA cleavage and Igh/c-Myc translocations, without significant effect on TOP1 recruitment to chromatin. We thus propose that SMARCA4 is involved in the TOP1 recruitment to general chromatin, whereas FACT is required for TOP1 binding to H3K4me3 at non-B DNA containing chromatin for the site-specific cleavage.
Hydrogeochemical evolution of shallow and deeper aquifers in central Bangladesh: arsenic mobilization process and health risk implications from the potable use of groundwater
Protection of groundwater quality from various natural and anthropogenic forces is a prime concern in Bangladesh. In this study, we utilized groundwater geochemistry of shallow and deeper aquifers to investigate the hydrogeochemical processes controlling water quality, and the sources and mechanism of Arsenic (As) release to water and associated human health risks in the Faridpur district, Bangladesh. Analysis of hydrochemical facies indicated that groundwaters were Ca–Mg–HCO3 type and that water–rock interactions were the dominant factors controlling their major-ion chemical composition. The dissolution of calcite, dolomite, and silicates, as well as cation exchange processes regulated the major ions chemistry in the groundwater. Dissolved fluoride (F−) concentrations (0.02–0.4 mg/L) were lower than the drinking water standard of 1.5 mg/L set by the World Health Organization (WHO). Arsenic contamination of groundwater is among the biggest health threats in Bangladesh. The measured As concentration (0.01–1.46 mg/L with a mean of 0.12 mg/L) exceeded the maximum permissible limit of Bangladesh and WHO for drinking water. The estimated carcinogenic risk of As exceeded the upper benchmark of 1 × 10–4 for both adult and children, and health threats from shallow groundwater were more severe than the deeper water. The vertical distribution of As resembled Fe and Mn with their higher concentrations in shallow Holocene aquifers and lower in deeper Pleistocene aquifers. Speciation calculation indicated the majority of groundwater samples were oversaturated with respect to siderite, calcite, and dolomite, while undersaturated with respect to rhodochrosite. The saturation state of the minerals along with other processes may exert kinetic control on As, Fe, and Mn distribution in groundwater and lead to their lack of statistically significant correlations. Microbially mediated reductive dissolution of Fe and Mn oxyhydroxides is envisaged as the primary controlling mechanism of As mobilization in Faridpur groundwater. Pyrite oxidation was not postulated as a plausible explanation of As pollution.
Activation of tumor suppressor LKB1 by honokiol abrogates cancer stem-like phenotype in breast cancer via inhibition of oncogenic Stat3
Tumor suppressor and upstream master kinase Liver kinase B1 (LKB1) plays a significant role in suppressing cancer growth and metastatic progression. We show that low-LKB1 expression significantly correlates with poor survival outcome in breast cancer. In line with this observation, loss-of-LKB1 rendered breast cancer cells highly migratory and invasive, attaining cancer stem cell-like phenotype. Accordingly, LKB1-null breast cancer cells exhibited an increased ability to form mammospheres and elevated expression of pluripotency-factors (Oct4, Nanog and Sox2), properties also observed in spontaneous tumors in Lkb1 −/− mice. Conversely, LKB1-overexpression in LKB1-null cells abrogated invasion, migration and mammosphere-formation. Honokiol (HNK), a bioactive molecule from Magnolia grandiflora increased LKB1 expression, inhibited individual cell-motility and abrogated the stem-like phenotype of breast cancer cells by reducing the formation of mammosphere, expression of pluripotency-factors and aldehyde dehydrogenase activity. LKB1, and its substrate, AMP-dependent protein kinase (AMPK) are important for HNK-mediated inhibition of pluripotency factors since LKB1-silencing and AMPK-inhibition abrogated, while LKB1-overexpression and AMPK-activation potentiated HNK’s effects. Mechanistic studies showed that HNK inhibited Stat3-phosphorylation/activation in an LKB1-dependent manner, preventing its recruitment to canonical binding-sites in the promoters of Nanog, Oct4 and Sox2. Thus, inhibition of the coactivation-function of Stat3 resulted in suppression of expression of pluripotency factors. Further, we showed that HNK inhibited breast tumorigenesis in mice in an LKB1-dependent manner. Molecular analyses of HNK-treated xenografts corroborated our in vitro mechanistic findings. Collectively, these results present the first in vitro and in vivo evidence to support crosstalk between LKB1, Stat3 and pluripotency factors in breast cancer and effective anticancer modulation of this axis with HNK treatment.
Experimental genital tract infection demonstrates Neisseria gonorrhoeae MtrCDE efflux pump is not required for in vivo human infection and identifies gonococcal colonization bottleneck
The MtrCDE efflux pump of Neisseria gonorrhoeae exports a wide range of antimicrobial compounds that the gonococcus encounters at mucosal surfaces during colonization and infection and is a known gonococcal virulence factor. Here, we evaluate the role of this efflux pump system in strain FA1090 during in vivo human male urethral infection with N. gonorrhoeae using a controlled human infection model. With the strategy of competitive infections initiated with mixtures of wild-type FA1090 and an isogenic mutant FA1090 strain that does not contain a functional MtrCDE pump, we found that the presence of the efflux pump is not required for an infection to be established in the human male urethra. This finding contrasts with previous studies of in vivo infection in the lower genital tract of female mice, which demonstrated that mutant gonococci of a different strain (FA19) lacking a functional MtrCDE pump had a significantly reduced fitness compared to their wild-type parental FA19 strain. To determine if these conflicting results are due to strain or human vs . mouse differences, we conducted a series of systematic competitive infections in female mice with the same FA1090 strains as in humans, and with FA19 strains, including mutants that do not assemble a functional MtrCDE efflux pump. Our results indicate the fitness advantage provided by the MtrCDE efflux pump during infection of mice is strain dependent. Owing to the equal fitness of the two FA1090 strains in men, our experiments also demonstrated the presence of a colonization bottleneck of N. gonorrhoeae in the human male urethra, which may open a new area of inquiry into N. gonorrhoeae infection dynamics and control. TRIAL REGISTRATION . Clinicaltrials.gov NCT03840811 .
MUR1-mediated cell-wall fucosylation is required for freezing tolerance in Arabidopsis thaliana
• Forward genetic screens play a key role in the identification of genes contributing to plant stress tolerance. Using a screen for freezing sensitivity, we have identified a novel freezing tolerance gene, SENSITIVE-TO-FREEZING8, in Arabidopsis thaliana. • We identified SFR8 using recombination-based mapping and whole-genome sequencing. As SFR8 was predicted to have an effect on cell wall composition, we used GC-MS and polyacrylamide gel electrophoresis to measure cell-wall fucose and boron (B)-dependent dimerization of the cell-wall pectic domain rhamnogalacturonan II (RGII) in planta. After treatments to promote borate-bridging of RGII, we assessed freeze-induced damage in wild-type and sfr8 plants by measuring electrolyte leakage from freeze-thawed leaf discs. • We mapped the sfr8 mutation to MUR1, a gene encoding the fucose biosynthetic enzyme GDP-D-mannose-4,6-dehydratase. sfr8 cell walls exhibited low cell-wall fucose levels and reduced RGII bridging. Freezing sensitivity of sfr8 mutants was ameliorated by B supplementation, which can restore RGII dimerization. B transport mutants with reduced RGII dimerization were also freezing-sensitive. • Our research identifies a role for the structure and composition of the plant primary cell wall in determining basal plant freezing tolerance and highlights the specific importance of fucosylation, most likely through its effect on the ability of RGII pectin to dimerize.