Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
65 result(s) for "Beigel, Florian"
Sort by:
Autoantibody Profiling in Ulcerative Colitis: Identification of Early Immune Signatures and Disease-Associated Antigens for Improved Diagnosis and Monitoring
Ulcerative colitis (UC) is a major form of inflammatory bowel disease (IBD) characterised by chronic immune-mediated inflammation. While serological biomarkers for IBD diagnosis and differentiation have been explored, autoantibody-based profiling remains underdeveloped. This study aimed to elucidate antibody signatures in manifested and pre-diagnostic UC patients compared to controls using a high-content protein microarray. Serum and plasma samples from manifested and pre-diagnostic UC cohorts were analysed using AIT’s 16k protein microarray, presenting 6369 human proteins. The pre-diagnostic cohort, consisting of 33 UC cases and 33 controls, included longitudinal samples collected before diagnosis, while the severe UC cohort, comprising 49 severe UC patients and 23 controls, included individuals undergoing treatment. Immunoglobulin G (IgG) autoantibody reactivity was assessed to identify differentially reactive antigens (DIRAGs) linked to UC onset, disease progression, and activity. In manifested UC, 691 DIRAGs showed higher reactivity in cases. In the pre-diagnostic cohort, 966 DIRAGs were identified, with 803 antigens exhibiting increased reactivity in cases. Longitudinal analysis revealed 1371 DIRAGs, with 1185 showing increased reactivity closer to diagnosis when comparing samples collected 4–11 months before UC diagnosis to earlier time points 9–24 months prior, highlighting potential early biomarkers. A significant overlap of 286 antigens, corresponding to 41 percent of identified DIRAGs, was observed between severe and pre-diagnostic UC datasets, with an odds ratio of 3.8 and a p-value below 2.2 × 10−16, confirming reliability and biological relevance. Additionally, 21 antigens correlated with simple clinical colitis activity index (SCCAI) scores. Reactome pathway analysis identified 49 pathways associated with DIRAGs in pre-diagnostic UC, distinct from 24 pathways in manifested UC, with an overlap of five key pathways related to protein folding, immune regulation, and viral infection, reflecting differences in disease onset and manifestation. Autoantibody profiling reveals early immune signatures in UC, offering novel biomarkers for preclinical diagnosis and disease monitoring. The overlap between pre-diagnostic and manifested UC antigenic profiles reinforces their biological relevance, linking them to molecular pathology. These findings highlight antibody profiling as an additional omics layer, paving the way for new diagnostic and therapeutic strategies in UC management.
CCL20 expression is elevated in inflammatory bowel disease and attenuated by vitamin D metabolites
Intestinal epithelial overexpression of the Th17 cell chemoattractant CCL20 is implicated in inflammatory bowel disease and influenced by NOD2 mutations in Crohn’s disease. Vitamin D metabolites have been shown to ameliorate inflammatory bowel disease. Considering NOD2 mutations in Crohn’s disease, we investigated whether Vitamin D deficiency (serum 25-hydroxyvitamin D concentration < 20 ng/mL) increases circulating CCL20 levels in inflammatory bowel disease patients and healthy controls and whether active 1,25-dihydroxyvitamin D (calcitriol) downregulates systemic and intestinal CCL20 expression. In a cross-sectional study, serum concentrations of CCL20, 25-hydroxyvitamin D, and calcitriol were measured in 170 NOD2 -genotyped Crohn’s disease patients, 80 ulcerative colitis patients, and 60 healthy controls. Additionally, the effect of calcitriol on experimentally induced CCL20 expression was examined using human intestinal epithelial HT-29 cells. Multivariable linear regression analyses revealed that both the diagnosis of inflammatory bowel disease and vitamin D deficiency were independently associated with elevated CCL20 levels. Compared to healthy controls, Crohn’s disease patients and ulcerative colitis patients exhibited significantly higher circulating CCL20 levels. Unlike in Crohn’s disease patients, vitamin D deficiency was associated with higher CCL20 levels in healthy controls and ulcerative colitis patients, whereas the calcitriol/25-hydroxyvitamin D activation ratios were negatively correlated with serum CCL20 levels in healthy controls and ulcerative colitis patients with sufficient serum 25-hydroxyvitamin D status. Furthermore, calcitriol markedly inhibited intestinal epithelial induction of CCL20. In Crohn’s disease patients, cholecalciferol supplementation was associated with lower serum CCL20 levels, which were unaffected by NOD2 mutations. These findings suggest that although vitamin D metabolites may downregulate CCL20 expression in healthy controls and ulcerative colitis patients, this regulatory effect appears to be impaired in Crohn’s disease patients.
Autoantibodies as diagnostic markers and potential drivers of inflammation in ulcerative colitis
To date, no comprehensive analysis of autoantibodies in sera of patients with ulcerative colitis has been conducted. To analyze the spectrum of autoantibodies and to elucidate their role serum-IgG from UC patients (n = 49) and non-UC donors (n = 23) were screened by using a human protein microarray. Screening yielded a remarkable number of 697 differentially-reactive at the nominal 0·01 significance level (FDR<0·1) of the univariate test between the UC and the non-UC group. CD99 emerged as a biomarker to discriminate between both groups (p = 1e-04, AUC = 0·8). In addition, cytokines, chemokines and growth factors were analyzed by Olink's Proseek® Multiplex Inflammation-I 96×96 immuno-qPCR assay and 31 genes were significant at the nominal 0.05 level of the univariate test to discriminate between UC and non-UC donors. MCP-3, HGF and CXCL-9 were identified as the most significant markers to discriminate between UC patients with clinically active and inactive disease. Levels of CXCL10 (cor = 0.3; p = 0.02), CCL25 (cor = 0.25; p = 0.04) and CCL28 (cor = 0.3; p = 0.02) correlated positively with levels of anti CD99. To assess whether autoantibodies are detectable prior to diagnosis with UC, sera from nine donors at two different time points (T-early, median 21 months and T-late, median 6 months) were analyzed. 1201 features were identified with higher reactivity in samples at time points closer to clinical UC presentation. In vitro, additional challenge of peripheral mononuclear cells with CD99 did not activate CD4+ T cells but induced the secretion of IL-10 (-CD99: 20.21±20.25; +CD99: 130.20±89.55; mean ±sd; p = 0.015). To examine the effect of CD99 in vivo, inflammation and autoantibody levels were examined in NOD/ScidIL2Rγnull mice reconstituted with PBMC from UC donors (NSG-UC). Additional challenge with CD99 aggravated disease symptoms and pathological phenotype as indicated by the elevated clinical score (-CD99: 1·85 ± 1·94; +CD99: 4·25 ± 1·48) and histological score (-CD99: 2·16 ± 0·83; +CD99: 3·15 ± 1·16, p = 0·01). Furthermore, levels of anti-CD99 antibodies increased (Control: 398 ± 323; mean MFI ± sd; Ethanol + PBS: 358 ±316; Ethanol + CD99: 1363 ± 1336; Control versus Ethanol + CD99: p = 0.03). In a highly inflammatory environment, frequencies of pro-inflammatory M1 monocytes (CD14+ CD64+: unchallenged 8.09±4.72; challenged 14.2±8.62; p = 0.07; CD14+ CD1a+: unchallenged 16.29 ±6.97; challenged 43.81±14.4, p = 0.0003) increased and levels of autoantibodies in serum decreased in the NSG-UC mouse model. These results suggest that autoantibodies are potent biomarkers to discriminate between UC and non-UC and indicate risk to develop UC. In an inflammatory environment, auto-antibodies may promote the pathological phenotype by activating M1 monocytes in the NSG-UC animal model and also in patients with UC.
Oncostatin M Mediates STAT3-Dependent Intestinal Epithelial Restitution via Increased Cell Proliferation, Decreased Apoptosis and Upregulation of SERPIN Family Members
Oncostatin M (OSM) is produced by activated T cells, monocytes, and dendritic cells and signals through two distinct receptor complexes consisting of gp130 and LIFR (I) or OSMR-β and gp130 (II), respectively. Aim of this study was to analyze the role of OSM in intestinal epithelial cells (IEC) and intestinal inflammation. OSM expression and OSM receptor distribution was analyzed by PCR and immunohistochemistry experiments, signal transduction by immunoblotting. Gene expression studies were performed by microarray analysis and RT-PCR. Apoptosis was measured by caspases-3/7 activity. IEC migration and proliferation was studied in wounding and water soluble tetrazolium assays. The IEC lines Caco-2, DLD-1, SW480, HCT116 and HT-29 express mRNA for the OSM receptor subunits gp130 and OSMR-β, while only HCT116, HT-29 and DLD-1 cells express LIFR mRNA. OSM binding to its receptor complex activates STAT1, STAT3, ERK-1/2, SAPK/JNK-1/2, and Akt. Microarray analysis revealed 79 genes that were significantly up-regulated (adj.-p ≤ 0.05) by OSM in IEC. Most up-regulated genes belong to the functional categories \"immunity and defense\" (p = 2.1 × 10(-7)), \"apoptosis\" (p = 3.7 × 10(-4)) and \"JAK/STAT cascade\" (p = 3.4 × 10(-6)). Members of the SERPIN gene family were among the most strongly up-regulated genes. OSM significantly increased STAT3- and MEK1-dependent IEC cell proliferation (p<0.05) and wound healing (p = 3.9 × 10(-5)). OSM protein expression was increased in colonic biopsies of patients with active inflammatory bowel disease (IBD). OSM promotes STAT3-dependent intestinal epithelial cell proliferation and wound healing in vitro. Considering the increased OSM expression in colonic biopsy specimens of patients with active IBD, OSM upregulation may modulate a barrier-protective host response in intestinal inflammation. Further in vivo studies are warranted to elucidate the exact role of OSM in intestinal inflammation and the potential of OSM as a drug target in IBD.
Development of a uniform, very aggressive disease phenotype in all homozygous carriers of the NOD2 mutation p.Leu1007fsX1008 with Crohn’s disease and active smoking status resulting in ileal stenosis requiring surgery
NOD2 variants are the strongest genetic predictors for susceptibility to Crohn's disease (CD). However, the clinical value of NOD2 on an individual patient level remains controversial. We aimed to define the predictive power of the major NOD2 mutations regarding complicated CD in a large single center cohort. 1076 CD patients were prospectively genotyped for the three common CD-associated NOD2 mutations rs2066844, rs2066845, and rs2066847, followed by detailed genotype-phenotype analyses. Overall, 434 CD patients (40.3%) carried at least one of the three main NOD2 mutations. A significantly higher minor allele frequency (15.6%) of the NOD2 frameshift mutation p.Leu1007fsX1008 (rs2066847) was seen in patients with aggressive disease compared to 8.2% in patients with mild disease (p = 2.6 x 10.sup.-5). Moreover, a total of 54 CD patients (5.0%) were homozygous for this NOD2 frameshift mutation. 100% of these patients had ileal disease compared to 82% of NOD2 wild-type carriers (p<0.0001). In homozygous carriers of the NOD2 frameshift mutation, 87% presented with ileal stenosis, 68.5% had fistulas, and 72.2% required CD-related surgery despite immunosuppressive therapy in 87% of these patients. All homozygous carriers of the 1007fs mutation who were active smokers had ileal stenosis and required CD-related surgery. Homozygosity for Leu1007fsX1008 is an excellent biomarker for predicting complicated CD on an individual patient level. Active smoking and homozygosity for this mutation is associated with a 100% risk for developing ileal stenosis requiring CD-related surgery. In these patients, smoking cessation and early initiation of immunosuppressive strategies may be beneficial.
Design and validation of a disease network of inflammatory processes in the NSG-UC mouse model
Background Ulcerative colitis (UC) is a highly progressive inflammatory disease that requires the interaction of epithelial, immune, endothelial and muscle cells and fibroblasts. Previous studies suggested two inflammatory conditions in UC-patients: ‘acute’ and ‘remodeling’ and that the design of a disease network might improve the understanding of the inflammatory processes. The objective of the study was to design and validate a disease network in the NOD-SCID IL2rγ null (NSG)-UC mouse model to get a better understanding of the inflammatory processes. Methods Leukocytes were isolated from the spleen of NSG-UC mice and subjected to flow cytometric analysis. RT-PCR and RNAseq analysis were performed from distal parts of the colon. Based on these analyses and the effects of interleukins, chemokines and growth factors described in the literature, a disease network was designed. To validate the disease network the effect of infliximab and pitrakinra was tested in the NSG-UC model. A clinical- and histological score, frequencies of human leukocytes isolated from spleen and mRNA expression levels from distal parts of the colon were determined. Results Analysis of leukocytes isolated from the spleen of challenged NSG-UC mice corroborated CD64, CD163 and CD1a expressing CD14+ monocytes, CD1a expressing CD11b+ macrophages and HGF, TARC, IFNγ and TGFß1 mRNA as inflammatory markers. The disease network suggested that a proinflammatory condition elicited by IL-17c and lipids and relayed by cytotoxic T-cells, Th17 cells and CD1a expressing macrophages and monocytes. Conversely, the remodeling condition was evoked by IL-34 and TARC and promoted by Th2 cells and M2 monocytes. Mice benefitted from treatment with infliximab as indicated by the histological- and clinical score. As predicted by the disease network infliximab reduced the proinflammatory response by suppressing M1 monocytes and CD1a expressing monocytes and macrophages and decreased levels of IFNγ, TARC and HGF mRNA. As predicted by the disease network inflammation aggravated in the presence of pitrakinra as indicated by the clinical and histological score, elevated frequencies of CD1a expressing macrophages and TNFα and IFNγ mRNA levels. Conclusions The combination of the disease network and the NSG-UC animal model might be developed into a powerful tool to predict efficacy or in-efficacy and potential mechanistic side effects.
Targeting ulcerative colitis by suppressing glucose uptake with ritonavir
Glucose is the preferred source of energy in activated inflammatory cells. Glucose uptake into the cell is ensured by a family of glucose uptake transporters (GLUTs), which have been identified as off-target molecules of the HIV protease inhibitor ritonavir. In this study, we examined the effect of ritonavir on inflammation in vitro and in vivo. Peripheral blood mononuclear cells (PBMCs) were activated with anti-CD3 in the presence or absence of ritonavir and analyzed by flow cytometric analysis. Frequencies of CD4+ cells were significantly affected by ritonavir (CD69+ P=3E-05; CD134 P=4E-06; CD25+ P=E-07; central memory P=0.02; effector P=6E-03; effector memory P=6E-05). To corroborate that inflammation has a metabolic effect in vivo, a mouse model was used that is based on immunocompromised NOD-scid IL-2Rγ null mice reconstituted with PBMCs from patients with ulcerative colitis (UC). Inflammation had a significant effect on amino acid (AA) levels (Glu P=1E-07, Asp P=1E-04). Principal component analysis (PCA) discriminated between unchallenged and challenged groups. Finally, the efficacy of ritonavir was tested in the same mouse model. Dependent variables were clinical and histological scores, frequencies of human leukocytes isolated from spleen and colon, and levels of AA in sera of mice. Mice benefited from treatment with ritonavir as indicated by significantly decreased colon (P=7E-04) and histological (P=1E-04) scores, frequencies of M2 monocytes (CD14+ CD163; P=0.02), and Glu levels (P=2E-05). PCA discriminated between control and challenged groups (P=0.026). Thus, inhibition of glucose uptake might be a promising therapeutic intervention point for active UC.
Solid Organ Transplantation in Patients with Inflammatory Bowel Diseases (IBD): Analysis of Transplantation Outcome and IBD Activity in a Large Single Center Cohort
Currently, limited data of the outcome of inflammatory bowel disease (IBD) in patients after solid organ transplantation (SOT) are available. We aimed to analyze effects of SOT on the IBD course in a large IBD patient cohort. Clinical data from 1537 IBD patients were analyzed for patients who underwent SOT (n = 31) between July 2002 and May 2014. Sub-analyses included SOT outcome parameters, IBD activity before and after SOT, and efficacy of IBD treatment. 4.74% of patients with ulcerative colitis (UC) and 0.84% of patients with Crohn's disease (CD) underwent SOT (p = 2.69 x 10(-6), UC vs. CD). 77.4% of patients with SOT underwent liver transplantation (LTx) with tacrolimus-based immunosuppressive therapy after SOT. All LTx were due to primary sclerosing cholangitis (PSC) or PSC overlap syndromes. Six patients (19.4%) required renal transplantation and one patient (3.2%) heart transplantation. A survival rate of 83.9% after a median follow-up period of 103 months was observed. Before SOT, 65.0% of patients were in clinical remission and 5 patients received immunosuppressive therapy (16.1%). After SOT, 61.0% of patients were in remission (p = 1.00 vs. before SOT) and 29.0% required IBD-specific immunosuppressive or anti-TNF therapy (p = 0.54 vs. before SOT). 42.9% of patients with worsening of IBD after SOT were at higher risk of needing steroid therapy for increased IBD activity (p = 0.03; relative risk (RR): 10.29; 95% CI 1.26-84.06). Four patients (13.0%) needed anti-TNF therapy after SOT (response rate 75%). SOT was more common in UC patients due to the higher prevalence of PSC-related liver cirrhosis in UC. Despite mainly tacrolimus-based immunosuppressive regimens, outcome of SOT and IBD was excellent in this cohort. In this SOT cohort, concomitant immunosuppressive therapy due to IBD was well tolerated.
IRGM Variants and Susceptibility to Inflammatory Bowel Disease in the German Population
Genome-wide association studies identified the autophagy gene IRGM to be strongly associated with Crohn's disease (CD) but its impact in ulcerative colitis (UC), its phenotypic effects and potential epistatic interactions with other IBD susceptibility genes are less clear which we therefore analyzed in this study. Genomic DNA from 2060 individuals including 817 CD patients, 283 UC patients, and 961 healthy, unrelated controls (all of Caucasian origin) was analyzed for six IRGM single nucleotide polymorphisms (SNPs) (rs13371189, rs10065172 = p.Leu105Leu, rs4958847, rs1000113, rs11747270, rs931058). In all patients, a detailed genotype-phenotype analysis and testing for epistasis with the three major CD susceptibility genes NOD2, IL23R and ATG16L1 were performed. Our analysis revealed an association of the IRGM SNPs rs13371189 (p = 0.02, OR 1.31 [95% CI 1.05-1.65]), rs10065172 = p.Leu105Leu (p = 0.016, OR 1.33 [95% CI 1.06-1.66]) and rs1000113 (p = 0.047, OR 1.27 [95% CI 1.01-1.61]) with CD susceptibility. There was linkage disequilibrium between these three IRGM SNPs. In UC, several IRGM haplotypes were weakly associated with UC susceptibility (p<0.05). Genotype-phenotype analysis revealed no significant associations with a specific IBD phenotype or ileal CD involvement. There was evidence for weak gene-gene-interaction between several SNPs of the autophagy genes IRGM and ATG16L1 (p<0.05), which, however, did not remain significant after Bonferroni correction. Our results confirm IRGM as susceptibility gene for CD in the German population, supporting a role for the autophagy genes IRGM and ATG16L1 in the pathogenesis of CD.
The PI3K pathway as a therapeutic intervention point in inflammatory bowel disease
With glucose being the preferred source of energy in activated T cells, targeting glycolysis has become an attractive therapeutic intervention point for chronic inflammatory bowel diseases (IBD). The switch to glycolysis is mediated by phosphoinositide‐3‐kinases (PI3K) which relay signals from surface receptors to the AKT pathway. We first confirmed by analysis of the oxygen consumption rate (OCR) and extracellular acidification rate (ECAR) that metabolism is shifted towards glycolysis in IBD patients as compared to non‐IBD donors. In contrast to non‐IBD donors, OCR correlated with ECAR (IBD: cor = 0.79, p = 2E‐10; non‐IBD: cor = 0.37, p = n.s.), in IBD patients. Second, we tested the PI3K inhibitor copanlisib as a potential therapeutic. Ex vivo, copanlisib suppressed the ECAR significantly in T cells activated by anti‐CD3 antibodies and significantly decreased ECAR rates in the presence of copanlisib (anti‐CD3: 58.24 ± 29.06; copanlisib: 43.16 ± 20.23, p < .000. In addition, copanlisib impaired the activation of CD4+ CD25+ T cells (anti‐CD3: 42.15 ± 21.46; anti‐CD3 + copanlisib: 26.06 ± 21.82 p = .013) and the secretion of cytokines (IFNγ: anti‐CD3: 6332.0 ± 5707.61 pmol/ml; anti‐CD3 + copanlisib: 6332.0 ± 5707.61, p = .018). In vivo, copanlisib significantly improved the histological scores (ethanol: 8.5 ± 3.81; copanlisib: 4.57 ± 2.82, p = .006) in the NSG‐UC mouse model. Orthogonal partial least square analysis confirmed the efficacy of copanlisib. These data suggest that the PI3K pathway provides an attractive therapeutic intervention point in IBD for patients in relapse. Targeting metabolic pathways have the potential to develop phase dependent therapies. Graphical In response to an inflammatory assault T cells favor glycolysis to ensure swit energy supply required for proliferation, migration and secretion of cytokines, chemokines and growth factors. Therefore, targetinginflammation has come into focus of interest as a therapeutical intervention point in chronic inflammatory bowel diseases. The phosphoinositide‐3‐kinases inhibitor copanlisib inhibits glycolysis and suppresses inflammation in a mouse model of ulcerative colitis.