Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
4
result(s) for
"Beijer, Barbro"
Sort by:
Vancomycin-Lipopeptide Conjugates with High Antimicrobial Activity on Vancomycin-Resistant Enterococci
by
Kleist, Christian
,
Mühlberg, Eric
,
Haberkorn, Uwe
in
Antibiotics
,
Antimicrobial agents
,
Bacteria
2020
Multidrug-resistant bacteria represent one of the most important health care problems worldwide. While there are numerous drugs available for standard therapy, there are only a few compounds capable of serving as a last resort for severe infections. Therefore, approaches to control multidrug-resistant bacteria must be implemented. Here, a strategy of reactivating the established glycopeptide antibiotic vancomycin by structural modification with polycationic peptides and subsequent fatty acid conjugation to overcome the resistance of multidrug-resistant bacteria was followed. This study especially focuses on the structure–activity relationship, depending on the modification site and fatty acid chain length. The synthesized conjugates showed high antimicrobial potential on vancomycin-resistant enterococci. We were able to demonstrate that the antimicrobial activity of the vancomycin-lipopeptide conjugates depends on the chain length of the attached fatty acid. All conjugates showed good cytocompatibility in vitro and in vivo. Radiolabeling enabled the in vivo determination of pharmacokinetics in Wistar rats by molecular imaging and biodistribution studies. An improved biodistribution profile in comparison to unmodified vancomycin was observed. While vancomycin is rapidly excreted by the kidneys, the most potent conjugate shows a hepatobiliary excretion profile. In conclusion, these results demonstrate the potential of the structural modification of already established antibiotics to provide highly active compounds for tackling multidrug-resistant bacteria.
Journal Article
Impact of Linker Modification and PEGylation of Vancomycin Conjugates on Structure-Activity Relationships and Pharmacokinetics
by
Umstätter, Florian
,
Ohlsen, Knut
,
Hertlein, Tobias
in
Antibiotics
,
Antimicrobial agents
,
antimicrobial resistance
2022
As multidrug-resistant bacteria represent a concerning burden, experts insist on the need for a dramatic rethinking on antibiotic use and development in order to avoid a post-antibiotic era. New and rapidly developable strategies for antimicrobial substances, in particular substances highly potent against multidrug-resistant bacteria, are urgently required. Some of the treatment options currently available for multidrug-resistant bacteria are considerably limited by side effects and unfavorable pharmacokinetics. The glycopeptide vancomycin is considered an antibiotic of last resort. Its use is challenged by bacterial strains exhibiting various types of resistance. Therefore, in this study, highly active polycationic peptide-vancomycin conjugates with varying linker characteristics or the addition of PEG moieties were synthesized to optimize pharmacokinetics while retaining or even increasing antimicrobial activity in comparison to vancomycin. The antimicrobial activity of the novel conjugates was determined by microdilution assays on susceptible and vancomycin-resistant bacterial strains. VAN1 and VAN2, the most promising linker-modified derivatives, were further characterized in vivo with molecular imaging and biodistribution studies in rodents, showing that the linker moiety influences both antimicrobial activity and pharmacokinetics. Encouragingly, VAN2 was able to undercut the resistance breakpoint in microdilution assays on vanB and vanC vancomycin-resistant enterococci. Out of all PEGylated derivatives, VAN:PEG1 and VAN:PEG3 were able to overcome vanC resistance. Biodistribution studies of the novel derivatives revealed significant changes in pharmacokinetics when compared with vancomycin. In conclusion, linker modification of vancomycin-polycationic peptide conjugates represents a promising strategy for the modulation of pharmacokinetic behavior while providing potent antimicrobial activity.
Journal Article
Conjugation of Polycationic Peptides Extends the Efficacy Spectrum of β‐Lactam Antibiotics
by
Müller, Hannah
,
Böhmann, Manuel B.
,
Umstätter, Florian
in
Animals
,
Anti-Bacterial Agents - chemistry
,
Anti-Bacterial Agents - pharmacology
2024
Antibiotic‐resistant enterococci represent a significant global health challenge. Unfortunately, most β‐lactam antibiotics are not applicable for enterococcal infections due to intrinsic resistance. To extend their antimicrobial spectrum, polycationic peptides are conjugated to examples from each of the four classes of β‐lactam antibiotics. Remarkably, the β‐lactam–peptide conjugates gained an up to 1000‐fold increase in antimicrobial activity against vancomycin‐susceptible and vancomycin‐resistant enterococci. Even against β‐lactam‐resistant Gram‐negative strains, the conjugates are found to be effective despite their size exceeding the exclusion volume of porins. The extraordinary gain of activity can be explained by an altered mode of killing. Of note, the conjugates showed a concentration‐dependent activity in contrast to the parent β‐lactam antibiotics that exhibited a time‐dependent mode of action. In comparison to the parent β‐lactams, the conjugates showed altered affinities to the penicillin‐binding proteins. Furthermore, it is found that peptide conjugation also resulted in a different elimination route of the compounds when administered to rodents. In mice systemically infected with vancomycin‐resistant enterococci, treatment with a β‐lactam–peptide conjugate reduced bacterial burden in the liver compared to its originator. Therefore, peptide modification of β–lactam antibiotics represents a promising platform strategy to broaden their efficacy spectrum, particularly against enterococci. Novel potent compounds are urgently required for the treatment of antibiotic‐resistant bacteria. Conjugation of polycationic peptides to β‐lactam antibiotics extends their efficacy spectrum against enterococci. The β‐lactam–peptide conjugates show significant differences in mechanism and biodistribution compared to their originators. Due to their high potency, the β‐lactam–peptide conjugates can serve as an alternative treatment option for severe enterococcal infections.
Journal Article
Crystal Structures at 2.5 Angstrom Resolution of Seryl-tRNA Synthetase Complexed with Two Analogs of Seryl Adenylate
by
Larsen, Kjeld
,
Belrhali, Hassan
,
Tukalo, Michael
in
Active sites
,
Adenosine - analogs & derivatives
,
Adenosine - chemical synthesis
1994
Crystal structures of seryl-tRNA synthetase from Thermus thermophilus complexed with two different analogs of seryl adenylate have been determined at 2.5 Å resolution. The first complex is between the enzyme and seryl-hydroxamate-AMP (adenosine monophosphate), produced enzymatically in the crystal from adenosine triphosphate (ATP) and serine hydroxamate, and the second is with a synthetic analog of seryl adenylate (5′-O-[N-(L-seryl)-sulfamoyl]adenosine), which is a strong inhibitor of the enzyme. Both molecules are bound in a similar fashion by a network of hydrogen bond interactions in a deep hydrophilic cleft formed by the antiparallel β sheet and surrounding loops of the synthetase catalytic domain. Four regions in the primary sequence are involved in the interactions, including the motif 2 and 3 regions of class 2 synthetases. Apart from the specific recognition of the serine side chain, the interactions are likely to be similar in all class 2 synthetases.
Journal Article