Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
32
result(s) for
"Bellaouchi, Reda"
Sort by:
Exploring the Multi-Faceted Potential of Carob (Ceratonia siliqua var. Rahma) Leaves from Morocco: A Comprehensive Analysis of Polyphenols Profile, Antimicrobial Activity, Cytotoxicity against Breast Cancer Cell Lines, and Genotoxicity
by
Aherkou, Marouane
,
Saalaoui, Ennouamane
,
Elfazazi, Kaoutar
in
Anti-infective agents
,
antimicrobial activity
,
Antimicrobial agents
2023
The botanical species Ceratonia siliqua L., commonly referred to as the Carob tree, and locally as “L’Kharrûb”, holds significance as an agro-sylvo-pastoral species, and is traditionally utilized in Morocco for treating a variety of ailments. This current investigation aims to ascertain the antioxidant, antimicrobial, and cytotoxic properties of the ethanolic extract of C. siliqua leaves (CSEE). Initially, we analyzed the chemical composition of CSEE through high-performance liquid chromatography with Diode-Array Detection (HPLC-DAD). Subsequently, we conducted various assessments, including DPPH scavenging capacity, β-carotene bleaching assay, ABTS scavenging, and total antioxidant capacity assays to evaluate the antioxidant activity of the extract. In this study, we investigated the antimicrobial properties of CSEE against five bacterial strains (two gram-positive, Staphylococcus aureus, and Enterococcus faecalis; and three gram-negative bacteria, Escherichia coli, Escherichia vekanda, and Pseudomonas aeruginosa) and two fungi (Candida albicans, and Geotrichum candidum). Additionally, we evaluated the cytotoxicity of CSEE on three human breast cancer cell lines (MCF-7, MDA-MB-231, and MDA-MB-436) and assessed the potential genotoxicity of the extract using the comet assay. Through HPLC-DAD analysis, we determined that phenolic acids and flavonoids were the primary constituents of the CSEE extract. The results of the DPPH test indicated a potent scavenging capacity of the extract with an IC50 of 302.78 ± 7.55 µg/mL, which was comparable to that of ascorbic acid with an IC50 of 260.24 ± 6.45 µg/mL. Similarly, the β-carotene test demonstrated an IC50 of 352.06 ± 12.16 µg/mL, signifying the extract’s potential to inhibit oxidative damage. The ABTS assay revealed IC50 values of 48.13 ± 3.66 TE µmol/mL, indicating a strong ability of CSEE to scavenge ABTS radicals, and the TAC assay demonstrated an IC50 value of 165 ± 7.66 µg AAE/mg. The results suggest that the CSEE extract had potent antioxidant activity. Regarding its antimicrobial activity, the CSEE extract was effective against all five tested bacterial strains, indicating its broad-spectrum antibacterial properties. However, it only showed moderate activity against the two tested fungal strains, suggesting it may not be as effective against fungi. The CSEE exhibited a noteworthy dose-dependent inhibitory activity against all the tested tumor cell lines in vitro. The extract did not induce DNA damage at the concentrations of 6.25, 12.5, 25, and 50 µg/mL, as assessed by the comet assay. However, the 100 µg/mL concentration of CSEE resulted in a significant genotoxic effect compared to the negative control. A computational analysis was conducted to determine the physicochemical and pharmacokinetic characteristics of the constituent molecules present in the extract. The Prediction of Activity Spectra of Substances (PASS) test was employed to forecast the potential biological activities of these molecules. Additionally, the toxicity of the molecules was evaluated using the Protox II webserver.
Journal Article
Preparation and Biochemical Characterization of Penicillium crustosum Thom P22 Lipase Immobilization Using Adsorption, Encapsulation, and Adsorption–Encapsulation Approaches
by
Bentouhami, Nour Eddine
,
Dab, Ahlem
,
Asehraou, Abdeslam
in
Adsorption
,
Alginates - chemistry
,
Chemical bonds
2025
This work describes the immobilization and the characterization of purified Penicillium crustosum Thom P22 lipase (PCrL) using adsorption, encapsulation, and adsorption–encapsulation approaches. The maximum activity of the immobilized PCrL on CaCO3 microspheres and sodium alginate beads was shifted from 37 to 45 °C, compared with that of the free enzyme. When sodium alginate was coupled with zeolite or chitosan, the immobilization yield reached 100% and the immobilized PCrL showed improved stability over a wide temperature range, retaining all of its initial activity after a one-hour incubation at 60 °C. The immobilization of PCrL significantly improves its catalytic performance in organic solvents, its pH tolerance value, and its thermal stability. Interestingly, 95% and almost 50% of PCrL’s initial activity was retained after 6 and 12 cycles, respectively. The characteristics of all PCrL forms were analyzed by X-ray diffraction and scanning electron microscopy combined with energy dispersive spectroscopy. The maximum conversion efficiency of oleic acid and methanol to methyl esters (biodiesel), by PCrL immobilized on CaCO3, was 65% after a 12 h incubation at 40 °C, while free PCrL generated only 30% conversion, under the same conditions.
Journal Article
Optimization of antibacterial and antifungal activities in Moroccan saffron by-products using mixture design and simplex centroid methodology
by
Asehraou, Abdeslam
,
Al-Maaqar, Saleh M.
,
Saalaoui, Ennouamane
in
631/326/1320
,
631/326/193
,
631/326/22
2025
The health risks associated with synthetic preservatives have intensified the search for natural antimicrobial alternatives.
Crocus sativus
L. (saffron) generates abundant by-products, such as tepals and leaves, which are rich in bioactive compounds with demonstrated antimicrobial potential. Compared to other natural alternatives, saffron by-products offer distinct advantages, including a unique combination of phenolic compounds (e.g., ellagic acid, rutin) and carotenoids (e.g., crocin) that act synergistically against both Gram-positive and Gram-negative bacteria, as well as fungi. Additionally, these by-products represent a sustainable solution, with approximately 63 kg of agricultural waste generated per kg of saffron spice. This study optimized the antibacterial and antifungal efficacy of saffron extracts using a simplex centroid mixture design. Phytochemical analysis using high-performance liquid chromatography with diode-array detection (HPLC–DAD) identified key antimicrobial compounds, including ellagic acid (68.43% in leaves, 50.31% in tepals) and crocin (9.59% in stigmas). Antimicrobial assays against
Staphylococcus aureus
,
Escherichia coli
,
Candida albicans
, and
Geotrichum candidum
revealed that stigma extracts exhibited superior antibacterial activity (MIC = 25 mg/mL for
S. aureus
and
E. coli
), while tepal and leaf extracts showed promising antifungal effects (MIC = 12.5 mg/mL for
G. candidum
). The mixture design approach uncovered synergistic interactions, with an equimolar combination of stigma, tepal, and leaf extracts (33:33:33) demonstrating the strongest antibacterial activity (MIC = 25 mg/mL) and a ternary mixture (34% stigma, 30% leaf, 36% tepal) achieving the lowest antifungal MIC (6.25 mg/mL). These findings highlight saffron by-products as highly effective and sustainable natural antimicrobials, providing a cost-efficient (40–60% reduction compared to conventional extracts) and multi-functional alternative to synthetic preservatives. Their dual functionality (antimicrobial + natural coloring) and agricultural waste origin make them particularly valuable for industrial applications in food preservation, pharmaceuticals, and biopharmaceuticals. The integration of statistical modeling maximizes their potential, meeting the growing demand for safe, natural antimicrobial solutions with clear competitive advantages
Journal Article
Characterization and optimization of extracellular enzymes production by Aspergillus niger strains isolated from date by-products
by
Hasnaoui, Amina
,
Ghabbour, Nabil
,
Asehraou, Abdeslam
in
Agricultural wastes
,
Amylases
,
Aspergillus niger
2021
This work aims to study the optimal conditions of the fermentation culture medium used for the production of extracellular enzymes (amylase, cellulase, lipase, and protease) from previously isolated Aspergillus niger strains in date by-products. The five most powerful isolates selected based on the zone of degradation formed on Petri plates by the substrate were subjected to the quantitative evaluation of their enzymatic production. All five strains showed almost similar API-ZYM profiles, with minor variations observed at the level of some specific enzyme expression. The production of cellulase and amylase was depending on pH and incubation temperatures. ASP2 strain demonstrated the high production rate of amylase (at pH 5 and 30 °C) and cellulase (at pH 6 and 30 °C) for 96 h of incubation. The A. niger showed the ability to produce several extracellular enzymes and can be used in the valorization of different agroindustrial residues.
Journal Article
Pharmacological Properties of Chemically Characterized Extracts from Mastic Tree: In Vitro and In Silico Assays
by
Ramdani, Mohamed
,
Hammouti, Belkheir
,
Bellaouchi, Reda
in
Algorithms
,
Analysis
,
Antibacterial activity
2023
The mastic tree, scientifically known as Pistacia lentiscus, which belongs to the Anacardiaceae family, was used in this study. The aim of this research was to analyze the chemical composition of this plant and assess its antioxidant and antibacterial properties using both laboratory experiments and computer simulations through molecular docking, a method that predicts the binding strength of a small molecule to a protein. The soxhlet method (SE) was employed to extract substances from the leaves of P. lentiscus found in the eastern region of Morocco. Hexane and methanol were the solvents used for the extraction process. The n-hexane extract was subjected to gas chromatography-mass spectrometry (GC/MS) to identify its fatty acid content. The methanolic extract underwent high-performance liquid chromatography with a diode-array detector (HPLC-DAD) to determine the presence of phenolic compounds. Antioxidant activity was assessed using the DPPH spectrophotometric test. The findings revealed that the main components in the n-hexane extract were linoleic acid (40.97 ± 0.33%), oleic acid (23.69 ± 0.12%), and palmitic acid (22.83 ± 0.10%). Catechin (37.05 ± 0.15%) was identified as the predominant compound in the methanolic extract through HPLC analysis. The methanolic extract exhibited significant DPPH radical scavenging, with an IC50 value of 0.26 ± 0.14 mg/mL. The antibacterial activity was tested against Staphylococcus aureus, Listeria innocua, and Escherichia coli, while the antifungal activity was evaluated against Geotrichum candidum and Rhodotorula glutinis. The P. lentiscus extract demonstrated notable antimicrobial effects. Additionally, apart from molecular docking, other important factors, such as drug similarity, drug metabolism and distribution within the body, potential adverse effects, and impact on bodily systems, were considered for the substances derived from P. lentiscus. Scientific algorithms, such as Prediction of Activity Spectra for Substances (PASS), Absorption, Distribution, Metabolism, Excretion (ADME), and Pro-Tox II, were utilized for this assessment. The results obtained from this research support the traditional medicinal usage of P. lentiscus and suggest its potential for drug development.
Journal Article
Evaluation of the Interaction between Carvacrol and Thymol, Major Compounds of Ptychotis verticillata Essential Oil: Antioxidant, Anti-Inflammatory and Anticancer Activities against Breast Cancer Lines
by
Ou-Yahia, Douaae
,
Asehraou, Abdeslam
,
Mothana, Ramzi A.
in
Analgesics
,
anti-inflammatory
,
Anti-inflammatory agents
2024
The objective of this study was to evaluate the antioxidant, anti-inflammatory, and anticancer properties of thymol, carvacrol, and their equimolar mixture. Antioxidant activities were assessed using the DPPH, ABTS, and ORAC methods. The thymol/carvacrol mixture exhibited significant synergism, surpassing the individual compounds and ascorbic acid in DPPH (IC50 = 43.82 ± 2.41 µg/mL) and ABTS (IC50 = 23.29 ± 0.71 µg/mL) assays. Anti-inflammatory activity was evaluated by inhibiting the 5-LOX, COX-1, and COX-2 enzymes. The equimolar mixture showed the strongest inhibition of 5-LOX (IC50 = 8.46 ± 0.92 µg/mL) and substantial inhibition of COX-1 (IC50 = 15.23 ± 2.34 µg/mL) and COX-2 (IC50 = 14.53 ± 2.42 µg/mL), indicating a synergistic effect. Anticancer activity was tested on MCF-7, MDA-MB-231, and MDA-MB-436 breast cancer cell lines using the MTT assay. The thymol/carvacrol mixture demonstrated superior cytotoxicity (IC50 = 0.92–1.70 µg/mL) and increased selectivity compared to cisplatin, with high selectivity indices (144.88–267.71). These results underscore the promising therapeutic potential of the thymol/carvacrol combination, particularly for its synergistic antioxidant, anti-inflammatory, and anticancer properties against breast cancer. This study paves the way for developing natural therapies against breast cancer and other conditions associated with oxidative stress and inflammation, leveraging the synergistic effects of natural compounds like thymol and carvacrol.
Journal Article
Assessment of the Antioxidant and Antimicrobial Potential of Ptychotis verticillata Duby Essential Oil from Eastern Morocco: An In Vitro and In Silico Analysis
by
Gseyra, Nadia
,
Asehraou, Abdeslam
,
Université Mohammed Premier [Oujda] = Université Mohammed Ier = University of Mohammed First
in
1EA1: Cytochrome P450 14 Alpha-Sterol Demethylase
,
1IYL: N-Myristoyl Transferase
,
1N8Q: Lipoxygenase
2023
Ptychotis verticillata Duby, referred to as Nûnkha in the local language, is a medicinal plant that is native to Morocco. This particular plant is a member of the Apiaceae family and has a longstanding history in traditional medicine and has been utilized for therapeutic purposes by practitioners for generations. The goal of this research is to uncover the phytochemical makeup of the essential oil extracted from P. verticillata, which is indigenous to the Touissite region in Eastern Morocco. The extraction of the essential oil of P. verticillata (PVEO) was accomplished through the use of hydro-distillation via a Clevenger apparatus. The chemical profile of the essential oil was then determined through analysis utilizing gas chromatography–mass spectrometry (GC/MS). The study findings indicated that the essential oil of P. verticillata is composed primarily of Carvacrol (37.05%), D-Limonene (22.97%), γ-Terpinene (15.97%), m-Cymene (12.14%) and Thymol (8.49%). The in vitro antioxidant potential of PVEO was evaluated using two methods: the 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical trapping assay and the ferric reducing antioxidant power (FRAP) method. The data demonstrated considerable radical scavenging and relative antioxidative power. Escherichia coli, Staphylococcus aureus, Listeria innocua, and Pseudomonas aeruginosa were the most susceptible bacterial strains tested, while Geotrichum candidum, Candida albicans, and Rhodotorula glutinis were the most resilient fungi strains. PVEO had broad-spectrum antifungal and antibacterial properties. To elucidate the antioxidative and antibacterial characteristics of the identified molecules, we applied the methodology of molecular docking, a computational approach that forecasts the binding of a small molecule to a protein. Additionally, we utilized the Prediction of Activity Spectra for Substances (PASS) algorithm; Absorption, Distribution, Metabolism, and Excretion (ADME); and Pro-Tox II (to predict the toxicity in silico) tests to demonstrate PVEO’s identified compounds’ drug-likeness, pharmacokinetic properties, the anticipated safety features after ingestion, and the potential pharmacological activity. Finally, our findings scientifically confirm the ethnomedicinal usage and usefulness of this plant, which may be a promising source for future pharmaceutical development.
Journal Article
Characterization of Probiotic Properties of Antifungal Lactobacillus Strains Isolated from Traditional Fermenting Green Olives
by
Ghabbour, Nabil
,
Karboune, Salwa
,
Asehraou, Abdeslam
in
Aminopeptidase
,
aminopeptidases
,
Antibacterial activity
2020
The aim of this work is to characterize the potential probiotic properties of 14 antifungal
Lactobacillus
strains isolated from traditional fermenting Moroccan green olives. The molecular identification of strains indicated that they are composed of five
Lactobacillus brevis
, two
Lactobacillus pentosus
, and seven
Lactobacillus plantarum
. In combination with bile (0.3%), all the strains showed survival rates (SRs) of 83.19–56.51% at pH 3, while 10 strains showed SRs of 31.67–64.44% at pH 2.5. All the strains demonstrated high tolerance to phenol (0.6%) and produced exopolysaccharides. The autoaggregation, hydrophobicity, antioxidant activities, and surface tension value ranges of the strains were 10.29–41.34%, 15.07–34.67%, 43.11–52.99%, and 36.23–40.27 mN/m, respectively. Bacterial cultures exhibited high antifungal activity against
Penicillium
sp
.
The cell-free supernatant (CFS) of the cultures showed important inhibition zones against
Candida pelliculosa
(18.2–24.85 mm), as well as an antibacterial effect against some gram-positive and gram-negative bacteria (10.1–14.1 mm). The neutralized cell-free supernatant of the cultures displayed considerable inhibitory activity against
C. pelliculosa
(11.2–16.4 mm). None of the strains showed acquired or horizontally transferable antibiotic resistance or mucin degradation or DNase, hemolytic, or gelatinase activities.
Lactobacillus brevis
S82
, Lactobacillus pentosus
S75, and
Lactobacillus plantarum
S62 showed aminopeptidase, β-galactosidase, and β-glucosidase activities, while the other enzymes of API-ZYM were not detected. The results obtained revealed that the selected antifungal
Lactobacillus
strains are considered suitable candidates for use both as probiotic cultures for human consumption and for starters and as biopreservative cultures in agriculture, food, and pharmaceutical industries.
Journal Article
Evaluation of Antioxidant Activity, Cytotoxicity, and Genotoxicity of Ptychotis verticillata Essential Oil: Towards Novel Breast Cancer Therapeutics
by
Asehraou, Abdeslam
,
Saalaoui, Ennouamane
,
Chaabane, Khalid
in
antioxidant activity
,
Antioxidants
,
Aromatic compounds
2023
Breast cancer is a disease characterized by the uncontrolled proliferation of malignant cells in breast tissue, and oxidative stress activated by an accumulation of reactive oxygen species (ROS) is associated with its development and progression. Essential oils from medicinal plants, known for their antioxidant and therapeutic properties, are being explored as alternatives. Ptychotis verticillata, also known as Nûnkha, is a medicinal plant native to Morocco, belonging to the Apiaceae family, and used for generations in traditional medicine. This study focuses on the phytochemical characterization of P. verticillata essential oil (PVEO) from the province of Oujda, Morocco, for its therapeutic properties. The essential oil was obtained by hydro-distillation, and its volatile components were analyzed by gas chromatography-mass spectrometry (GC-MS). The results revealed the presence of various aromatic and terpene compounds, with carvacrol being the most abundant compound. PVEO showed antioxidant properties in several tests, including β-carotene bleaching, 2,2-diphenyl-1-picrylhydrazyl (DPPH) scavenging and total antioxidant capacity (TAC). It also demonstrated cytotoxicity against MCF-7 and MDA-MB-231 breast cancer cell lines, with higher selectivity for MDA-MB-231. The results reveal that Ptychotis verticillata essential oil (PVEO) could be a promising natural alternative for the treatment of breast cancer,
Journal Article
Phytochemical characterization and multifaceted bioactivity assessment of essential oil from Clinopodium nepeta subsp. ascendens: potential for the food and pharmaceutical sectors
by
Asehraou, Abdeslam
,
Al-Maaqar, Saleh M.
,
Haddou, Mounir
in
Additives
,
Anti-inflammatory agents
,
antineoplastic activity
2024
This study delves into the biological characteristics of Clinopodium nepeta subsp. ascendens (CNEO) essential oil, an indigenous subspecies of eastern Morocco. Distinguished by its purple or pale pinkish-white flowers, CNEO was subjected to thorough phytochemical analysis via gas chromatography-mass spectrometry (GC-MS), revealing 21 terpene compounds, notably Dihydrocarvone (22.70%), Neoisomenthol (43.59%), and Pulegone (20.55%). These compounds, recognized for their biological and pharmacological attributes, were further investigated for their potential applications. Notably, CNEO exhibited dose-dependent anti-inflammatory effects by attenuating nitric oxide (NO) and prostaglandin E2 (PGE2) production. Moreover, it demonstrated promising anticancer activity against MDA-MB-468, HepG2, and HCT-15 cancer cell lines, rivaling doxorubicin's effectiveness. These findings underscore CNEO's nutraceutical potential, particularly in food science and industry, suggesting its use as a functional food additive with both nutritional and health benefits
Journal Article